Skip to main content
Log in

Matrix Bundles and Operator Algebras Over a Finitely Bordered Riemann Surface

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

This note presents an analysis of a class of operator algebras constructed as cross-sectional algebras of flat holomorphic matrix bundles over a finitely bordered Riemann surface. These algebras are partly inspired by the bundle shifts of Abrahamse and Douglas. The first objective is to understand the boundary representations of the containing \(C^*\)-algebra, i.e. Arveson’s noncommutative Choquet boundary for each of our operator algebras. The boundary representations of our operator algebras for their containing \(C^*\)-algebras are calculated, and it is shown that they correspond to evaluations on the boundary of the Riemann surface. Secondly, we show that our algebras are Azumaya algebras, the algebraic analogues of n-homogeneous \(C^*\)-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, William B.: Subalgebras of \(C^{\ast } \)-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hopenwasser, A.: Boundary representations on \(C^{\ast } \)-algebras with matrix units. Trans. Am. Math. Soc. 177, 483490 (1973)

    MathSciNet  Google Scholar 

  3. Muhly, P.S., Solel, B.: Tensor algebras over \(C^*\)-correspondences: representations, dilations, and \(C^*\)-envelopes. J. Funct. Anal. 158(2), 389457 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davidson, Kenneth R., Katsoulis, Elias G.: Dilating covariant representations of the non-commutative disc algebras. J. Funct. Anal. 259(4), 817831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dritschel, M.A., McCullough, S.A.: Boundary representations for families of representations of operator algebras and spaces. J. Oper. Theory 53(1), 159–167 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Matthew Kennedy and Orr Moshe Shalit: Essential normality, essential norms and hyperrigidity. J. Funct. Anal. 268(10), 2990–3016 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Katsoulis, E., Ramsey, C.: Crossed products of operator algebras. ArXiv e-prints, (2015)

  8. Griesenauer, E., Muhly, P.S., Solel, B.: Boundaries, bundles and trace algebras. ArXiv e-prints, (2015)

  9. Abrahamse, M.B., Douglas, R.G.: A class of subnormal operators related to multiply-connected domains. Adv. Math. 19(1), 106148 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tomiyama, J., Takesaki, M.: Applications of fibre bundles to the certain class of \(C^{\ast } \)-algebras. Thoku Math. J. 13(2), 498–522 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ahlfors, Lars V, Sario, Leo: Riemann Surfaces. Princeton Mathematical Series. No. 26. Princeton University Press, Princeton (1960)

    Book  Google Scholar 

  12. Steenrod, N.: The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  13. Arveson, William: The noncommutative Choquet boundary. J. Am. Math. Soc. 21(4), 1065–1084 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Artin, M.: On Azumaya algebras and finite dimensional representations of rings. J. Algebra 11, 532–563 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Procesi, C.: On a theorem of M. Artin. J. Algebra 22, 309–315 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Massey, W.S.: Algebraic topology: An Introduction. Harcourt, Brace & World Inc, New York (1967)

    MATH  Google Scholar 

  17. Widom, H.: \(H_p\) sections of vector bundles over Riemann surfaces. Ann. Math. 94(2), 304–324 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katok, S.: Fuchsian Groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)

    Google Scholar 

  19. Gunning, R.C.: Lectures on Vector Bundles Over Riemann Surfaces. University of Tokyo Press, Princeton University Press, Tokyo, Princeton (1967)

    MATH  Google Scholar 

  20. Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-Trace \(C^*\)-algebras, Volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)

    Book  MATH  Google Scholar 

  21. Grothendieck, A.: A general theory of fibre spaces with structure sheaf. In: National Science Foundation Research Project on Geometry of Function Space. University of Kansas, Dept. of Mathematics, (1955)

  22. Gunning, R.C.: Lectures on Riemann Surfaces. Princeton Mathematical Notes. Princeton University Press, Princeton (1966)

    MATH  Google Scholar 

  23. Kobayashi, S.: Differential geometry of complex vector bundles, In: Volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton. Kanô Memorial Lectures, 5. (1987)

  24. Grauert, H.: Seminars on analytic functions. Number v. 2 in Seminars on Analytic Functions. Institute for Advanced Study. (1958)

  25. Rhrl, H.: Das Riemann-Hilbertsche problem der theorie der linearen differentialgleichungen. Math. Ann. 133, 125 (1957)

    MathSciNet  Google Scholar 

  26. Dixmier, J.: \(C^*\)-algebras. Translated from the French by Francis Jellett. North Holland Mathematical Library, vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

  27. Davidson, Kenneth R., Kennedy, Matthew: The Choquet boundary of an operator system. Duke Math. J. 164(15), 2989–3004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bishop, Errett, de Leeuw, Karel: The representations of linear functionals by measures on sets of extreme points. Ann. Inst. Fourier Grenoble 9, 305–331 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wermer, J.: Analytic disks in maximal ideal spaces. Am. J. Math. 86, 161–170 (1964)

    Article  MathSciNet  Google Scholar 

  30. Ahern, P.R., Sarason, Donald: The \(H^{p}\) spaces of a class of function algebras. Acta Math. 117, 123–163 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Arveson, William: The noncommutative Choquet boundary II: hyperrigidity. Israel J. Math. 184, 349–385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kleski, C.: Boundary representations and pure completely positive maps. J. Oper. Theory 71(1), 4562 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Arens, Richard: The closed maximal ideals of algebras of functions holomorphic on a Riemann surface. Rend. Circ. Mat. Palermo 7, 245–260 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  34. Formanek, E.: Central polynomials for matrix rings. J. Algebra 23, 129–132 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Razmyslov, J.P.: A certain problem of Kaplansky. Izv. Akad. Nauk SSSR Ser. Mat. 37, 483501 (1973)

    MathSciNet  Google Scholar 

  36. DeMeyer, F., Ingraham, E.: Separable algebras over commutative rings. In: Lecture Notes in Mathematics, vol. 181. Springer, Berlin (1971)

Download references

Acknowledgements

The author would like to thank Paul Muhly for his incisive and insightful feedback, as well as his lively encouragement, during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn McCormick.

Additional information

Communicated by Joseph Ball.

Appendix

Appendix

For a \(C^\infty \) real manifold [23, Sect. 2], or a Riemann surface [22, Sect. 6], one can define a flat vector bundle as a vector bundle which has a coordinate representative with locally constant transition functions. This is equivalent to the following perspective. Let \(\underline{GL_n(\mathbb {C})}\) be the constant sheaf over S, \(\mathcal {GL}_n(\mathbb {C})_h\) the sheaf of germs of holomorphic \(GL_n(\mathbb {C})\)-valued functions, \(i : {\underline{GL_n(\mathbb {C})}} \rightarrow \mathcal {GL}_n(\mathbb {C})_h\) the inclusion of sheaves, and \(i_*: H^1(S,{\underline{GL_n(\mathbb {C})}}) \rightarrow H^1(S,\mathcal {GL}_n(\mathbb {C})_h)\) the induced map. Then a vector bundle with locally constant transition functions can be regarded as an element in the image of \(i_*\) (See, for example, [22, Sect. 6]).

Proof of Lemma 2.3

Let’s first consider the holomorphic case. In [19, Lem. 27], Gunning gives a 1–1 correspondence between the sets \(\text {Hom}(\pi _1(S),U_n)/U_n\) and \(H^1(S,{\underline{U_n(\mathbb {C})}})\). The same argument follows for the group \(PU_n(\mathbb {C})\). Gunning’s proof quite clearly and visually connects an element of \(\text {Hom}(\pi _1(S),G)/G\) with a coordinate bundle associated to a particular open cover \(\mathcal {U}\) of S. The continuous case is addressed in [12, Thm. 13.9]. For a discrete group G, Steenrod outlines the 1–1 correspondence between elements of \(\text {Hom}(\pi _1(S),G)/G\) and elements in \(H^1(S,{\underline{G}})\), for any topological space S that is locally compact, Hausdorff, second-countable, path-connected, locally path-connected, and semilocally simply connected. \(\square \)

Proof of Lemma 2.4

The map \(i_* : H^1(S,{\underline{PU_n (\mathbb {C})}}) \rightarrow H^1(S,\mathcal {PU}_n(\mathbb {C})_h)\) will be injective (in fact, an isomorphism), since an equivalence between coordinate bundles, viewed as elements in \(Z^1(S,\mathcal {PU}_n(\mathbb {C})_h)\), must be implemented by a cochain \((\lambda _U)_\mathcal {U}\) in which each \(\lambda _U\) is holomorphic and \(PU_n(\mathbb {C})\)-valued—that is, locally constant. \(\square \)

Proof of Lemma 2.5

We follow the proof in [17, pg. 306], substituting Lemma 2.4 for the analogous correspondence for vector bundles used by Widom. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormick, K. Matrix Bundles and Operator Algebras Over a Finitely Bordered Riemann Surface. Complex Anal. Oper. Theory 13, 659–671 (2019). https://doi.org/10.1007/s11785-018-0775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0775-8

Keywords

Navigation