Complex Analysis and Operator Theory

, Volume 12, Issue 4, pp 997–1014 | Cite as

Matrix Valued Truncated Toeplitz Operators: Basic Properties

Article
  • 80 Downloads

Abstract

Matrix valued truncated Toeplitz operators act on vector-valued model spaces. They represent a generalization of block Toeplitz matrices. A characterization of these operators analogue to the scalar case is obtained, as well as the determination of the symbols that produce the zero operator.

Keywords

Truncated Toeplitz operator Model space Inner function Block matrix 

Mathematics Subject Classification

Primary 47B35 47A45 Secondary 47B32 30J05 

References

  1. 1.
    Ball, J.A., Lubin, A.: On a class of contractive perturbations of restricted shifts. Pac. J. Math. 63, 309–323 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baranov, A., Bessonov, R., Kapustin, V.: Symbols of truncated Toeplitz operators. J. Funct. Anal. 259, 2673–2701 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baranov, A., Chalendar, I., Fricain, E., Mashreghi, J., Timotin, D.: Bounded symbols and reproducing kernels thesis for truncated Toeplitz operators. J. Funct. Anal. 261, 3437–3456 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices, Universitext. Springer, New York (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Chevrot, N., Fricain, E., Timotin, D.: The characteristic function of a complex symmetric contraction. Proc. Am. Math. Soc. 135, 2877–2886 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clark, D.N.: One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cima, J.A., Garcia, S.R., Ross, W.T., Wogen, W.R.: Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity. Indiana Univ. Math. J. 59, 595–620 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fuhrmann, P.A.: On a class of finite dimensional contractive perturbations of restricted shift of finite multiplicity. Isr. J. Math. 16, 162–175 (1973)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358, 1285–1315 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Garcia, S.R., Ross, W.T.: Recent progress on truncated Toeplitz operators. In: Blaschke Products and their Applications, Fields Institute Communications, vol. 65, pp. 275–319. Springer, New York (2013)Google Scholar
  11. 11.
    Martin, R.T.W.: Unitary perturbations of compressed \(n\)-dimensional shifts. Complex Anal. Oper. Theory 7, 765–799 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Peller, V.V.: Hankel Operators and their Applications. Springer, New York (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Sarason, D.: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1, 491–526 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nagy, B.S., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Revised and enlarged edition. Universitext. Springer, New York (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Abdus Salam School of Mathematical SciencesGC UniversityLahorePakistan
  2. 2.Institute of Mathematics Simion Stoilow of the Romanian AcademyBucharestRomania

Personalised recommendations