Existence and convergence of best proximity points in \(\mathrm{{CAT}}_\mathrm{{p}}(0)\) spaces


In this work, we study existence and convergence of best proximity points of a cyclic contraction mapping in a complete \(\mathrm{{CAT}}_\mathrm{{p}}(0)\) metric space, with \(p \ge 2\). The case of coupled best proximity points of a pair of cyclic contraction mappings is also discussed. As an application, we provide sufficient conditions to obtain an extension of the Banach Contraction Principle for coupled fixed points.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bridson, M., Haefliger, A.: Metric spaces of non-positive curvature. Springer-Verlag, Berlin (1999)

    Google Scholar 

  2. 2.

    Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Eldred, A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 3, 283–293 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Espinola, R., Fernández-León, A.: On best proximity points in metric and Banach spaces. Canad. J. Math. 63, 533–550 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Göhde, G.: Zumprinzip der kontraktiven Abbildung. Math. Nachr. 30, 251–258 (1965)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Series of Monographs and Textbooks in Pure and Applied Mathematics, 83. Dekker, New York (1984)

  7. 7.

    Khamsi, M.A., Shukri, S.: Generalized CAT(0) spaces. Bull. Belg. Math. Soc. Simon Stevin 24, 417–426 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Khan, A.R., Shukri, S.: Best proximity points in the Hilbert ball. J. Nonlinear Convex Anal. 17, 1083–1094 (2016)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Func. Anal. Optim. 24, 851–862 (2003)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kumam, W., Pakkaranang, N., Kumam, P., Cholamjiak, P.: Convergence analysis of modified Picard-S hybrid iterative algorithms for total asymptotically nonexpansive mappings in Hadamard spaces. Int. J. Comput. Math. 97, 175–188 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Pakkarananga, N., Kumama, P., Chod, Y.J., Saiparaa, P., Padcharoena, A., Khaofonga, C.: Strong convergence of modified viscosity implicit approximation methods for asymptotically nonexpansive mappings in complete CAT(0) spaces. J. Math. Computer Sci. 17, 345–354 (2017)

    Article  Google Scholar 

  12. 12.

    Raj, V.S.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Raj, V.S., Eldred, A.A.: A Characterization of Strictly Convex Spaces and Applications. J. Optim. Theory Appl. 160, 703–710 (2014)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Shukri, S., Khan, A.R.: Best proximity points in partially ordered metric spaces. Adv. Fixed Point Theory 8, 118–130 (2017)

    Google Scholar 

  15. 15.

    Sintunavarat, W., Kumam, P.: Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012, 93 (2012)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Shukri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukri, S. Existence and convergence of best proximity points in \(\mathrm{{CAT}}_\mathrm{{p}}(0)\) spaces. J. Fixed Point Theory Appl. 22, 48 (2020). https://doi.org/10.1007/s11784-020-00785-6

Download citation


  • Best proximity points
  • coupled best proximity points
  • fixed points
  • coupled fixed points
  • \(\mathrm{{CAT}}_\mathrm{{p}}(0)\) spaces
  • contraction mappings
  • cyclic contraction mappings

Mathematics Subject Classification

  • Primary 47H10
  • 54H25
  • Secondary 47H09
  • 46C20