Advertisement

Strong convergence of a self-adaptive method for the split feasibility problem in Banach spaces

  • Suthep Suantai
  • Yekini Shehu
  • Prasit Cholamjiak
  • Olaniyi S. Iyiola
Article
  • 160 Downloads

Abstract

In signal processing and image reconstruction, the split feasibility problem (SFP) has been now investigated extensively because of its applications. A classical way to solve the SFP is to use Byrne’s CQ-algorithm. However, this method requires the computation of the norm of the bounded linear operator or the matrix norm in a finite-dimensional space. In this work, we aim to propose an iterative scheme for solving the SFP in the framework of Banach spaces. We also introduce a new way to select the step-size which ensures the convergence of the sequences generated by our scheme. We finally provide examples including its numerical experiments to illustrate the convergence behavior. The main results are new and complements many recent results in the literature.

Keywords

Split feasibility problem strong convergence self-adaptive method optimization Banach space 

Mathematics Subject Classification

47H04 47H10 54H25 

Notes

Acknowledgements

This research was supported by the Thailand Research Fund and the Commission on Higher Education under Grant MRG5980248. S. Suantai would like to thank Chiang Mai University. The research was carried out when the second author was an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany. He is grateful to the Alexander von Humboldt Foundation, Bonn, for the fellowship and the Institute of Mathematics, Julius Maximilian University of Wurzburg, Germany, for the hospitality and facilities.

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009)Google Scholar
  2. 2.
    Alber, Y.I.: Metric and generalized projections in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–20. Dekker, New York (1996)Google Scholar
  3. 3.
    Alber, Y.I., Butnariu, D.: Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces. J. Optim. Theory Appl. 92, 33–61 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aleyner, A., Reich, S.: Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces. J. Math. Anal. Appl. 343, 427–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alsulami, S.M., Takahashi, W.: Iterative methods for the split feasibility problem in Banach spaces. J. Convex Anal. 16, 585–596 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonesky, T., Kazimierski, K.S., Maass, P., Schöpfer, F., Schuster, T.: Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. 2008, 192679 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brègman, L.M.: A relaxation method of finding a common point of convex sets and its applications to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, vol. 40. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  10. 10.
    Butnariu, D., Iusem, A.N., Resmerita, E.: Total convexity for powers of the norm in uniformly convex Banach spaces. J. Convex Anal. 7, 319–334 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Butnariu, D., Kassay, G.: A proximal-projection method for finding zeros of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin, ISBN 978-3-642-30900-7 (2012)Google Scholar
  15. 15.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations. Lecture Notes in Mathematics, vol. 1965, XVII. Springer, Berlin, ISBN 978-1-84882-189-7 (2009)Google Scholar
  18. 18.
    Cioranescu, I.: Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, vol. 62. Kluwer, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)zbMATHGoogle Scholar
  20. 20.
    Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kuo, L.-W., Sahu, D.R.: Bregman distance and strong convergence of proximal-type algorithms. Abstr. Appl. Anal. 2013, 590519 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    López, G., Martin-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8, 2099–2110 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moudafi, A.: A relaxed alternating CQ-algorithm for convex feasibility problems. Nonlinear Anal. 79, 117–121 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15, 809–818 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24, 055008 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shehu, Y.: Iterative methods for split feasibility problems in certain Banach spaces. J. Nonlinear Convex Anal. 16, 2315–2364 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  33. 33.
    Wang, F.: A new algorithm for solving the multiple-sets split feasibility problem in certain Banach spaces. Numer. Funct. Anal. Optim. 35, 99–110 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu, H.K.: Another control conditions in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yao, Y., Postolache, M., Liou, Y.C.: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013 (2013).  https://doi.org/10.1186/1687-1812-2013-201
  38. 38.
    Zhou, H., Wang, P.: Some remarks on the paper “Strong convergence of a self-adaptive method for the split feasibility problem”. Numer. Algorithms 70, 333–339 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Suthep Suantai
    • 1
  • Yekini Shehu
    • 2
  • Prasit Cholamjiak
    • 3
  • Olaniyi S. Iyiola
    • 4
  1. 1.Center of Excellence in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of NigeriaNsukkaNigeria
  3. 3.School of ScienceUniversity of PhayaoPhayaoThailand
  4. 4.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations