Dynamical and proximal approaches for approximating fixed points of quasi-nonexpansive mappings

  • Hadi Khatibzadeh
  • Mohsen Rahimi Piranfar
  • Jamal Rooin


In this paper, we derive some weak and strong convergence results for a nonhomogeneous differential equation with a Lipschitz quasi-nonexpansive mapping. We also consider a discrete version that provides an iterative algorithm for approximating a fixed point of the mapping. We state some weak and strong convergence results related to this algorithm. Finally, we compare this algorithm with the classical algorithms for approximating fixed points of quasi-nonexpansive mappings, and show the advantage of the proposed algorithm via convergence rates.


Quasi-nonexpansive mapping fixed point evolution equation asymptotic behavior proximal point algorithm rate of convergence 

Mathematics Subject Classification

Primary 47E05 65J15 Secondary 65J08 65B99 



The authors thank the referee for his/her very careful reading of the manuscript and helpful suggestions.


  1. 1.
    Ahmadi, P., Khatibzadeh, H.: Convergence and rate of convergence of a non-autonmous gradient system on Hadamard manifold. Lobachevskii J. Math. 35, 165–171 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahmadi, P., Khatibzadeh, H.: Long time behavior of quasi-convex and pseudo-convex gradient systems on Riemannian manifolds. Filomat 31, 4571–4578 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baillon, J.B.: Un exemple concernant le comportement asymptotique de la solution du problème \(du/dt+\partial \varphi (u)\ni 0\). J. Funct. Anal. 28, 369–376 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baillon, J.B., Brézis, H.: Une remarque sur le comportement asymptotique des semi-groupes non linéaires. Houston J. Math. 2, 5–7 (1976)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brézis, H., Lions, P.L.: Produits infinis derésolvantes. Isr. J. Math. 29, 329–345 (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Func. Anal. 18, 15–26 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Djafari Rouhani, B., Khatibzadeh, H.: On the proximal point algorithm. J. Optim. Theory Appl. 137, 411–417 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goudou, X., Munier, J.: The gradient and heavy ball with friction dynamical systems: the quasiconvex case. Math. Progr. Ser. B 116, 173–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Khatibzadeh, H.: Some remarks on the proximal point algorithm. J. Optim. Theory Appl. 153, 769–778 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Khatibzadeh, H., Mohebbi, V.: Non-homogeneous continuous and discrete gradient systems: the quasi-convex case. Bull. Iran. Math. Soc. (preprint)Google Scholar
  14. 14.
    Maiti, M., Ghosh, M.K.: Approximating fixed points by Ishikawa iterates. Bull. Austral. Math. Soc. 40, 113–117 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Morosanu, G.: Nonlinear Evolution Equations and Applications, vol. 26. Reidel, Dordrech (1988)zbMATHGoogle Scholar
  16. 16.
    Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Park, J.Y., Jeong, J.U.: Weak convergence to a fixed point of the sequence of Mann type iterates. J. Math. Anal. Appl. 184, 75–81 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pazy, A.: On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert space. J. Funct. Anal. 27, 292–307 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hadi Khatibzadeh
    • 1
  • Mohsen Rahimi Piranfar
    • 2
  • Jamal Rooin
    • 2
  1. 1.Department of MathmaticsUniversity of ZanjanZanjanIran
  2. 2.Department of MathematicsInstitute for Advanced Studies in Basic SciencesZanjanIran

Personalised recommendations