Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process

Abstract

The present study evaluated a photo-Fenton reactive membrane that achieved enhanced 1,4-Dioxane removal performance. As a common organic solvent and stabilizer, 1,4-Dioxane is widely used in a variety of industrial products and poses negative environmental and health impacts. The membrane was prepared by covalently coating photocatalyst of goethite (α-FeOOH) on a ceramic porous membrane as we reported previously. The effects of UV irradiation, H2O2 and catalyst on the removal efficiency of 1,4-Dioxane in batch reactors were first evaluated for optimized reaction conditions, followed by a systematical investigation of 1,4-Dioxane removal in the photo-Fenton membrane filtration mode. Under optimized conditions, the 1,4-Dioxane removal rate reached up to 16% with combination of 2 mmol/L H2O2 and UV365 irradiation (2000 µW/cm2) when the feed water was filtered by the photo-Fenton reactive membrane at a hydraulic retention time of 6 min. The removal efficiency and apparent quantum yield (AQY) were both enhanced in the filtration compared to the batch mode of the same photo-Fenton reaction. Moreover, the proposed degradation pathways were analyzed by density functional theory (DFT) calculations, which provided a new insight into the degradation mechanisms of 1,4-Dioxane in photo-Fenton reactions on the functionalized ceramic membrane.

This is a preview of subscription content, access via your institution.

References

  1. Adamson D T, Piña E A, Cartwright A E, Rauch S R, Anderson R H, Mohr T, Connor J A (2017). 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule. Science of the Total Environment, 596: 236–245

    Article  CAS  Google Scholar 

  2. Ahmad R, Kim J K, Kim J H, Kim J (2019). Diethylene glycol-assisted organized TiO2 nanostructures for photocatalytic wastewater treatment ceramic membranes. Water, 11(4): 750

    CAS  Article  Google Scholar 

  3. Alias N H, Jaafar J, Samitsu S, Matsuura T, Ismail A, Othman M, Rahman M A, Othman N H, Abdullah N, Paiman S H (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446

    CAS  Article  Google Scholar 

  4. Aryal R, Xia C, Liu J (2019). 1,4-Dioxane-contaminated groundwater remediation in the anode chamber of a microbial fuel cell. Water Environment Research, 91(11): 1537–1545

    CAS  Article  Google Scholar 

  5. Aziz A, Ibrahim S (2018). Preparation of activated carbon/N-doped titania composite for synergistic adsorption-photocatalytic oxidation of batik dye. MS&E, 358(1): 012014

    Google Scholar 

  6. Barndõk H, Blanco L, Hermosilla D, Blanco Á (2016a). Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. Chemical Engineering Journal, 284: 112–121

    Article  CAS  Google Scholar 

  7. Barndõk H, Hermosilla D, Han C, Dionysiou D D, Negro C, Blanco Á (2016b). Degradation of 1,4-Dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles. Applied Catalysis B: Environmental, 180: 44–52

    Article  CAS  Google Scholar 

  8. Barndõk H, Cortijo L, Hermosilla D, Negro C, Blanco Á (2014). Removal of 1,4-Dioxane from industrial wastewaters: Routes of decomposition under different operational conditions to determine the ozone oxidation capacity. Journal of Hazardous Materials, 280: 340–347

    Article  CAS  Google Scholar 

  9. Beckett M A, Hua I (2000). Elucidation of the 1,4-Dioxane decomposition pathway at discrete ultrasonic frequencies. Environmental Science & Technology, 34(18): 3944–3953

    CAS  Article  Google Scholar 

  10. Beckett M A, Hua I (2003). Enhanced sonochemical decomposition of 1,4-Dioxane by ferrous iron. Water Research, 37(10): 2372–2376

    CAS  Article  Google Scholar 

  11. Berger T, Regmi C, Schäfer A, Richards B (2020). Photocatalytic degradation of organic dye via atomic layer deposited TiO2-ceramic membranes in single-pass flow-through operation. Journal of Membrane Science: 118015

  12. Biniaz P, Makarem M A, Rahimpour M R (2019). Membrane reactors. In: Benaglia M, Puglisi A, eds. Catalyst Immobilization: Methods and Applications. Hoboken: Wiley, 307–324

    Google Scholar 

  13. Chabalala M B (2016). Preparation of doped nanotitanium dioxide (TIO2) immobilized on polyethersulphone (PES) nanofiberes for photocatalytic degradation of water pollutants. Master’s thesis. Johannesburg: University of Johannesburg

    Google Scholar 

  14. Chakraborty S, Loutatidou S, Palmisano G, Kujawa J, Mavukkandy M O, Al-Gharabli S, Curcio E, Arafat H A (2017). Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater. Journal of Environmental Chemical Engineering, 5(5): 5014–5024

    CAS  Article  Google Scholar 

  15. Cheremisinoff N P (2017). Groundwater Remediation: A Practical Guide for Environmental Engineers and Scientists. Hoboken: John Wiley & Sons

    Google Scholar 

  16. Chiou C H, Wu C Y, Juang R S (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 139(2): 322–329

    CAS  Article  Google Scholar 

  17. Chitra S, Paramasivan K, Cheralathan M, Sinha P K (2012). Degradation of 1,4-Dioxane using advanced oxidation processes. Environmental Science and Pollution Research International, 19(3): 871–878

    CAS  Article  Google Scholar 

  18. Choi J Y, Lee Y J, Shin J, Yang J W (2010). Anodic oxidation of 1,4-Dioxane on boron-doped diamond electrodes for wastewater treatment. Journal of Hazardous Materials, 179(1–3): 762–768

    CAS  Article  Google Scholar 

  19. Coleman H, Vimonses V, Leslie G, Amal R (2007). Degradation of 1,4-Dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. Journal of Hazardous Materials, 146(3): 496–501

    CAS  Article  Google Scholar 

  20. De Angelis L, De Cortalezzi M M F (2016). Improved membrane flux recovery by Fenton-type reactions. Journal of Membrane Science, 500: 255–264

    CAS  Article  Google Scholar 

  21. De Clercq J, Van De Steene E, Verbeken K, Verhaege M (2010). Electrochemical oxidation of 1,4-Dioxane at boron-doped diamond electrode. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(8): 1162–1167

    CAS  Article  Google Scholar 

  22. Ding Y, Sun W, Cao L, Yang J (2016). A spontaneous catalytic membrane reactor to dechlorinate 2,4,6-TCP as an organic pollutant in wastewater and to reclaim electricity simultaneously. Chemical Engineering Journal, 285: 573–580

    CAS  Article  Google Scholar 

  23. EPA, U.S. (2006). Treatment Technologies for 1,4-Dioxane: Fundamentals and Field Applications. Cincinnati: Office of Solid Waste and Emergency Response, EPA

    Google Scholar 

  24. EPA, U.S. (2017). Technical Fact Sheet for 1, 4-dioxane: EPA 505-F-17-011. Washington: Federal Facilities Restoration and Reuse Office, EPA

    Google Scholar 

  25. Fu W, Zhang W (2018). Microwave-enhanced membrane filtration for water treatment. Journal of Membrane Science, 568: 97–104

    CAS  Article  Google Scholar 

  26. Gu Y, Favier I, Pradel C, Gin D L, Lahitte J F, Noble R D, Gómez M, Remigy J C (2015). High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly (ionic liquid) in Suzuki-Miyaura cross-coupling reaction. Journal of Membrane Science, 492: 331–339

    CAS  Article  Google Scholar 

  27. Guo Y, Xu B, Qi F (2016). A novel ceramic membrane coated with MnO2-Co3O4 nanoparticles catalytic ozonation for benzophenone-3 degradation in aqueous solution: fabrication, characterization and performance. Chemical Engineering Journal, 287: 381–389

    CAS  Article  Google Scholar 

  28. He J, Ma W, Song W, Zhao J, Qian X, Zhang S, Jimmy C Y (2005). Photoreaction of aromatic compounds at α-FeOOH/H2O interface in the presence of H2O2: Evidence for organic-goethite surface complex formation. Water Research, 39(1): 119–128

    CAS  Article  Google Scholar 

  29. Hwangbo M, Claycomb E C, Liu Y, Alivio T E, Banerjee S, Chu K H (2019). Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Science of the Total Environment, 649: 1189–1197

    CAS  Article  Google Scholar 

  30. Jasmann J R, Borch T, Sale T C, Blotevogel J (2016). Advanced electrochemical oxidation of 1,4-Dioxane via dark catalysis by novel titanium dioxide (TiO2) pellets. Environmental Science & Technology, 50(16): 8817–8826

    CAS  Article  Google Scholar 

  31. Johns M M, Marshall W E, Toles C A (1998). Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics. Journal of Chemical Technology & Biotechnology Biotechnology, 71(2): 131–140

    CAS  Article  Google Scholar 

  32. Kamaludin R, Puad A S M, Othman M H D, Kadir S H S A, Harun Z (2019). Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5. Polymer Testing, 78: 105939

    CAS  Article  Google Scholar 

  33. Karges U, Becker J, Püttmann W (2018). 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Science of the Total Environment, 619: 712–720

    Article  CAS  Google Scholar 

  34. Klečka G M, Gonsior S J (1986). Removal of 1,4-Dioxane from wastewater. Journal of Hazardous Materials, 13(2): 161–168

    Article  Google Scholar 

  35. Kleine J, Peinemann K V, Schuster C, Warnecke H J (2002). Multifunctional system for treatment of wastewaters from adhesive-producing industries: Separation of solids and oxidation of dissolved pollutants using doted microfiltration membranes. Chemical Engineering Science, 57(9): 1661–1664

    CAS  Article  Google Scholar 

  36. Lee K C, Beak H J, Choo K H (2015). Membrane photoreactor treatment of 1, 4-Dioxane-containing textile wastewater effluent: Performance, modeling, and fouling control. Water Research, 86: 58–65

    CAS  Article  Google Scholar 

  37. Lee K C, Choo K H (2013). Hybridization of TiO2 photocatalysis with coagulation and flocculation for 1,4-Dioxane removal in drinking water treatment. Chemical Engineering Journal, 231: 227–235

    CAS  Article  Google Scholar 

  38. Li S, Zhang G, Peng W, Zheng H, Zheng Y (2016). Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 294: 371–379

    CAS  Article  Google Scholar 

  39. Li Y, Yeung K L (2019). Polymeric catalytic membrane for ozone treatment of DEET in water. Catalysis Today, 331: 53–59

    CAS  Article  Google Scholar 

  40. Liang L, Zhang J, Feng P, Li C, Huang Y, Dong B, Li L, Guan X (2015). Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Frontiers of Environmental Science & Engineering, 9(1): 16–38

    CAS  Article  Google Scholar 

  41. Liu G, Zhu D, Zhou W, Liao S, Cui J, Wu K, Hamilton D (2010). Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation. Applied Surface Science, 256(8): 2546–2551

    CAS  Article  Google Scholar 

  42. Liu H, Chen T, Frost R L (2014). An overview of the role of goethite surfaces in the environment. Chemosphere, 103: 1–11

    Article  CAS  Google Scholar 

  43. Lyman W J, Reehl W F, Rosenblatt D H (1990). Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society

    Google Scholar 

  44. Maekawa J, Mae K, Nakagawa H (2016). Degradation of 1,4-Dioxane by the ferrioxalate-mediated photo-Fenton process using UV or white LED irradiation. Journal of Chemical Engineering of Japan, 49(3): 305–311

    CAS  Article  Google Scholar 

  45. Mao J, Quan X, Wang J, Gao C, Chen S, Yu H, Zhang Y (2018). Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 12(6): 10

    Article  CAS  Google Scholar 

  46. Marenich A V, Cramer C J, Truhlar D G (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113(18): 6378–6396

    CAS  Article  Google Scholar 

  47. Martijn B J, Fuller A L, Malley J P, Kruithof J C (2010). Impact of IX-UF pretreatment on the feasibility of UV/H2O2 treatment for degradation of NDMA and 1,4-Dioxane. Ozone Science and Engineering, 32(6): 383–390

    CAS  Article  Google Scholar 

  48. Maurino V, Calza P, Minero C, Pelizzetti E, Vincenti M (1997). Lightassisted 1,4-dioxane degradation. Chemosphere, 35(11): 2675–2688

    CAS  Article  Google Scholar 

  49. Mcelroy A C, Hyman M R, Knappe D R (2019). 1,4-Dioxane in drinking water: Emerging for forty years and still unregulated. Current Opinion in Environmental Science & Health, 7: 117–125

    Article  Google Scholar 

  50. Mcguire M J, Suffet I H, Radziul J V (1978). Assessment of unit processes for the removal of trace organic compounds from drinking water. Journal-American Water Works Association, 70(10): 565–572

    CAS  Article  Google Scholar 

  51. Merayo N, Hermosilla D, Cortijo L, Blanco Á (2014). Optimization of the Fenton treatment of 1,4-Dioxane and on-line FTIR monitoring of the reaction. Journal of Hazardous Materials, 268: 102–109

    CAS  Article  Google Scholar 

  52. Miao X, Dai H, Chen J, Zhu J (2018). The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst. Separation and Purification Technology, 200: 36–43

    CAS  Article  Google Scholar 

  53. Miao Y, Johnson N W, Gedalanga P B, Adamson D, Newell C, Mahendra S (2019). Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-Dioxane and co-contaminants. Water Research, 149: 74–85

    CAS  Article  Google Scholar 

  54. Mohr T K, Stickney J A, Diguiseppi W H (2016). Environmental investigation and remediation: 1,4-Dioxane and other solvent stabilizers. Florida: CRC Press

    Google Scholar 

  55. Moustakas N, Katsaros F, Kontos A, Romanos G E, Dionysiou D, Falaras P (2014). Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption. Catalysis Today, 224: 56–69

    CAS  Article  Google Scholar 

  56. Nomura Y, Fukahori S, Fujiwara T J J O H M (2020). Removal of 1,4-Dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets. Journal of Hazardous Materials, 383: 121005

    CAS  Article  Google Scholar 

  57. Otitoju T A, Jiang D, Ouyang Y, Elamin M A M, Li S (2020). Photocatalytic degradation of Rhodamine B using CaCu3Ti4O12 embedded polyethersulfone hollow fiber membrane. Journal of industrial and engineering chemistry, 83: 145–152

    CAS  Article  Google Scholar 

  58. Otto M, Nagaraja S (2007). Treatment technologies for 1,4-Dioxane: Fundamentals and field applications. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques, 17(3): 81–88

    Article  Google Scholar 

  59. Papageorgiou S, Katsaros F, Favvas E, Romanos G E, Athanasekou C, Beltsios K, Tzialla O, Falaras P (2012). Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Research, 46(6): 1858–1872

    CAS  Article  Google Scholar 

  60. Qing W, Li X, Shao S, Shi X, Wang J, Feng Y, Zhang W, Zhang W (2019). Polymeric catalytically active membranes for reaction-separation coupling: A review. Journal of Membrane Science, 583: 118–138

    CAS  Article  Google Scholar 

  61. Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W (2020). Functional catalytic membrane development: A review of catalyst coating techniques. Advances in Colloid and Interface Science, 282: 102207

    CAS  Article  Google Scholar 

  62. Romanos G, Athanasekou C, Likodimos V, Aloupogiannis P, Falaras P (2013). Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Industrial & Engineering Chemistry Research, 52(39): 13938–13947

    CAS  Article  Google Scholar 

  63. Romanos G E, Athanasekou C, Katsaros F, Kanellopoulos N, Dionysiou D, Likodimos V, Falaras P (2012). Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. Journal of Hazardous Materials, 211: 304–316

    Article  CAS  Google Scholar 

  64. Rosenfeldt E J, Linden K G, Canonica S, Von Gunten U (2006). Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Research, 40(20): 3695–3704

    CAS  Article  Google Scholar 

  65. Scaratti G, Basso A, Landers R, Alvarez P J, Puma G L, Moreira R F (2018). Treatment of aqueous solutions of 1,4-Dioxane by ozonation and catalytic ozonation with copper oxide (CuO). Environmental Technology, 39: 1–13

    Article  CAS  Google Scholar 

  66. Son H S, Choi S B, Khan E, Zoh K D (2006). Removal of 1,4-Dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water Research, 40(4): 692–698

    CAS  Article  Google Scholar 

  67. Son H S, Im J K, Zoh K D (2009). A Fenton-like degradation mechanism for 1,4-Dioxane using zero-valent iron (Fe0) and UV light. Water Research, 43(5): 1457–1463

    CAS  Article  Google Scholar 

  68. Stefan M I, Bolton J R (1998). Mechanism of the degradation of 1,4-Dioxane in dilute aqueous solution using the UV/hydrogen peroxide process. Environmental Science & Technology, 32(11): 1588–1595

    CAS  Article  Google Scholar 

  69. Stepien D K, Diehl P, Helm J, Thoms A, Püttmann W (2014). Fate of 1,4-Dioxane in the aquatic environment: From sewage to drinking water. Water Research, 48(1): 406–419

    CAS  Article  Google Scholar 

  70. Suh J H, Mohseni M (2004). A study on the relationship between biodegradability enhancement and oxidation of 1,4-Dioxane using ozone and hydrogen peroxide. Water Research, 38(10): 2596–2604

    CAS  Article  Google Scholar 

  71. Sun M, Lopez-Velandia C, Knappe D R (2016). Determination of 1,4-Dioxane in the Cape Fear River watershed by heated purge-and-trap preconcentration and gas chromatography-mass spectrometry. Environmental Science & Technology, 50(5): 2246–2254

    CAS  Article  Google Scholar 

  72. Sun S, Yao H, Fu W, Hua L, Zhang G, Zhang W (2018). Reactive photo-Fenton ceramic membranes: Synthesis, characterization and anti-fouling performance. Water Research, 144: 690–698

    CAS  Article  Google Scholar 

  73. Sun S, Yao H, Fu W, Xue S, Zhang W (2020). Enhanced degradation of antibiotics by photo-Fenton reactive membrane filtration. Journal of Hazardous Materials, 386: 121955

    CAS  Article  Google Scholar 

  74. Tian G P, Wu Q Y, Li A, Wang W L, Hu H Y (2017). Promoted ozonation for the decomposition of 1,4-Dioxane by activated carbon. Water Science and Technology: Water Supply, 17(2): 613–620

    CAS  Google Scholar 

  75. Tseng D H, Juang L C, Huang H H (2012). Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. International Journal of Photo-energy, 2012: 328526

    Google Scholar 

  76. Varanasi L, Coscarelli E, Khaksari M, Mazzoleni L R, Minakata D (2018). Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes. Water Research, 135: 22–30

    CAS  Article  Google Scholar 

  77. Wang J, Wu Z, Li T, Ye J, Shen L, She Z, Liu F (2018). Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution. Chemical Engineering Journal, 334: 579–586

    CAS  Article  Google Scholar 

  78. Wei S, Zeng C, Lu Y, Liu G, Luo H, Zhang R (2019). Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst. Frontiers of Environmental Science & Engineering, 13(5): 66

    Article  CAS  Google Scholar 

  79. Westermann T, Melin T (2009). Flow-through catalytic membrane reactors: Principles and applications. Chemical Engineering and Processing: Process Intensification, 48(1): 17–28

    CAS  Article  Google Scholar 

  80. Xu X, Liu S, Cui Y, Wang X, Smith K, Wang Y (2019). Solar-driven removal of 1,4-Dioxane using WO3/nγ-Al2O3 nano-catalyst in water. Catalysts, 9(4): 389

    CAS  Article  Google Scholar 

  81. Yabuki Y, Yoshida G, Daifuku T, Ono J, Banno A J J O W, Technology E (2018). Biological treatment of 1,4-Dioxane in wastewater from landfill by indigenous microbes attached to flowing carriers. Journal of Water and Environment Technology, 16(6): 245–255

    Article  Google Scholar 

  82. Youn N K, Heo J E, Joo O S, Lee H, Kim J, Min B K (2010). The effect of dissolved oxygen on the 1,4-Dioxane degradation with TiO2 and Au-TiO2 photocatalysts. Journal of Hazardous Materials, 177(1–3): 216–221

    CAS  Article  Google Scholar 

  83. Zeng Q, Dong H, Wang X, Yu T, Cui W (2017). Degradation of 1, 4-Dioxane by hydroxyl radicals produced from clay minerals. Journal of Hazardous Materials, 331: 88–98

    CAS  Article  Google Scholar 

  84. Zhang S, Gedalanga P B, Mahendra S (2017). Advances in bioremediation of 1,4-Dioxane-contaminated waters. Journal of Environmental Management, 204: 765–774

    CAS  Article  Google Scholar 

  85. Zhao Y, Truhlar D G (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1–3): 215–241

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the National Natural Science Foundation of China (Grant Nos. 51778306, 21906001 and 51721006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Changqing Liu or Wen Zhang.

Ethics declarations

Declaration of Conflict of Interest The authors declare that they have no conflict of Interest.

Declaration and Verification The work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis).

Additional information

Highlights

• 1,4-Dioxane was degraded via the photo-Fenton reactive membrane filtration.

• Degradation efficiency and AQY were both enhanced in photocatalytic membrane.

• There was a tradeoff between photocatalytic degradation and membrane permeation flux.

• Degradation pathways of 1,4-Dioxane was revealed by DFT analysis.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Sun, S., Qing, W. et al. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process. Front. Environ. Sci. Eng. 15, 95 (2021). https://doi.org/10.1007/s11783-020-1341-y

Download citation

Keywords

  • Photo-Fenton
  • Ceramic membrane
  • 1,4-Dioxane
  • Goethite