Degradation of Polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration

Abstract

Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.

This is a preview of subscription content, log in to check access.

References

  1. Baker A, Inverarity R (2004). Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrological Processes, 18(15): 2927–2945

    Google Scholar 

  2. Bao M, Chen Q, Li Y, Jiang G (2010). Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. Journal of Hazardous Materials, 184(1–3): 105–110

    CAS  Google Scholar 

  3. Bolto B, Gregory J (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11): 2301–2324

    CAS  Google Scholar 

  4. Bolzonella D, Pavan P, Battistoni P, Cecchi F (2005). Influence of the cationic flocculant praestol K233L on the mesophilic anaerobic digestion of waste activated sludge. Journal of Residuals Science & Technology, 2(3): 133–141

    CAS  Google Scholar 

  5. Campos E, Almirall M, Mtnezalmela J, Palatsi J, Flotats X (2008). Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide. Bioresource Technology, 99(2): 387–395

    CAS  Google Scholar 

  6. Carstea E M, Bridgeman J, Baker A, Reynolds D M (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95: 205–219

    CAS  Google Scholar 

  7. Caulfield M J, Hao X, Qiao G G, Solomon D H (2003). Degradation on polyacrylamides. Part I. Linear polyacrylamide. Polymer, 44(5): 1331–1337

    CAS  Google Scholar 

  8. Caulfield M J, Qiao G G, Solomon D H (2002). Some aspects of the properties and degradation of polyacrylamides Chemical reviews. Chemical Reviews, 102(9): 3067–3084

    CAS  Google Scholar 

  9. Chu C P, Lee D J, Chang B V, You C H, Liao C S, Tay J H (2003a). Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere, 53(7): 757–764

    CAS  Google Scholar 

  10. Chu C P, Lee D J, Chang B V, You C H, Liao C S, Tay J H (2003b). Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere, 53(7): 757–764

    CAS  Google Scholar 

  11. Chu C P, Tsai D G, Lee D J, Tay J H (2005). Size-dependent anaerobic digestion rates of flocculated activated sludge: Role of intrafloc mass transfer resistance. Journal of Environmental Management, 76(3): 239–244

    CAS  Google Scholar 

  12. Dai X, Luo F, Yi J, He Q, Dong B (2014). Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresource Technology, 153: 55–61

    CAS  Google Scholar 

  13. Dai X, Luo F, Zhang D, Dai L, Chen Y, Dong B (2015b). Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal. Scientific Reports, 5(1): 11675–11675.

    Google Scholar 

  14. El-Mamouni R, Frigon J C, Hawari J E A, Marroni D, Guiot S R (2002). Combining photolysis and bioprocesses for mineralization of high molecular weight polyacrylamides. Biodegradation, 13(4): 221–227

    CAS  Google Scholar 

  15. Frolund B, Griebe T, Nielsen P H (1995). Enzymatic-activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 43(4): 755–761

    CAS  Google Scholar 

  16. Guzzo J, Guezennec A G (2015). Degradation and transfer of polyacrylamide based flocculent in sludge and industrial and natural waters. Environmental Science and Pollution Research International, 22(9): 6387–6389

    CAS  Google Scholar 

  17. Joshi S J, Abed R M M (2017). Biodegradation of polyacrylamide and its derivatives. Environmental Processes, 4(2): 463–476

    CAS  Google Scholar 

  18. Kasai Y, Kishira H, Harayama S (2002). Bacteria belonging to the genus cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Applied and Environmental Microbiology, 68(11): 5625–5633

    CAS  Google Scholar 

  19. Khan M F S, Wu J, Liu B, Cheng C, Akbar M, Chai Y, Memon A (2018). Fluorescence and photophysical properties of xylene isomers in water: With experimental and theoretical approaches. Royal Society Open Science, 5(2): 171719

    Google Scholar 

  20. Khan M F, Wu J, Cheng C, Akbar M, Liu B, Liu C, Xin Y (2020). Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water: Experimental and DFT study. Frontiers of Environmental Science & Engineering, 14(3): 42

    CAS  Google Scholar 

  21. Litti Y, Nikitina A, Kovalev D, Ermoshin A, Mahajan R, Goel G, Nozhevnikova A (2017). Influence of cationic polyacrilamide flocculant on high-solids’ anaerobic digestion of sewage sludge under thermophilic conditions. Environmental Technology, 40(3): 1–26

    Google Scholar 

  22. Liu B, Wu J, Cheng C, Tang J K, Khan M F S, Shen J (2019a). Identification of textile wastewater in water bodies by fluorescence excitation emission matrix-parallel factor analysis and high-performance size exclusion chromatography. Chemosphere, 216: 617–623

    CAS  Google Scholar 

  23. Liu X, Xu Q, Wang D, Wu Y, Yang Q, Liu Y, Wang Q, Li X, Li H, Zeng G, Yang G (2019b). Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Research, 155: 142–151

    CAS  Google Scholar 

  24. Liu X R, Xu Q X, Wang D B, Yang Q, Wu Y X, Li Y F, Fu Q Z, Yang F, Liu Y W, Ni B J, Wang Q L, Li X M (2019c). Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 281: 158–167

    CAS  Google Scholar 

  25. Ma H, Guo Y, Qin Y, Li Y Y (2018). Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Bioresource Technology, 269: 520–531

    CAS  Google Scholar 

  26. Mpofu P, Addai-Mensah J, Ralston J (2004). Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. Journal of Colloid and Interface Science, 271(1): 145–156

    CAS  Google Scholar 

  27. Mroczek E, Konieczny P, Lewicki A, Waskiewicz A, Dach J (2016). Preliminary study of acrylamide monomer decomposition during methane fermentation of dairy waste sludge. Journal of Environmental Sciences (China), 45: 108–114

    CAS  Google Scholar 

  28. Nakamiya K, Kinoshita S (1995). Isolation ofpolyacrylamide-degrading bacteria. Journal of Fermentation and Bioengineering, 80(4): 418–420

    CAS  Google Scholar 

  29. Seelert H, Krause F (2008). Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis, 29(12): 2617–2636

    CAS  Google Scholar 

  30. Walter W G (2005). APHA standard methods for the examination of water and wastewater. American Journal of Public Health and the Nation’s Health, (56): 387

    Google Scholar 

  31. Wang D B, Liu X R, Zeng G M, Zhao J W, Liu Y W, Wang Q L, Chen F, Li X M, Yang Q (2018). Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 130: 281–290

    CAS  Google Scholar 

  32. Wen Q X, Chen Z Q, Zhao Y, Zhang H C, Feng Y J (2011). Performance and microbial characteristics of bioaugmentation systems for polyacrylamide degradation. Journal of Polymers and the Environment, 19(1): 125–132

    CAS  Google Scholar 

  33. Xiong B, Loss R D, Shields D, Pawlik T, Hochreiter R, Zydney A L, Kumar M (2018). Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water, 1(1): 17

    CAS  Google Scholar 

  34. Xu Q X, Li X M, Ding R R, Wang D B, Liu Y W, Wang Q L, Zhao J W, Chen F, Zeng G M, Yang Q, Li H L (2017). Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research, 124: 269–279

    CAS  Google Scholar 

  35. Yang F C, Chen Y L, Tang S L, Yu C P, Wang P H, Ismail W, Wang C H, Ding J Y, Yang C Y, Yang C Y, Chiang Y R (2016). Integrated multiomics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment. ISME Journal, 10(8): 1967–1983

    CAS  Google Scholar 

  36. Yang G, Zhang P, Zhang G, Wang Y, Yang A (2015). Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresource Technology, 192: 126–130

    CAS  Google Scholar 

  37. Ye Q, Liang C, Wang C, Wang Y, Wang H (2018). Characterization of a phenanthrene-degrading methanogenic community. Frontiers of Environmental Science & Engineering, 12(5): 4

    Google Scholar 

  38. Zhang C C, Zhao L M, Bao M T, Lu J R (2018). Potential of hydrolyzed polyacrylamide biodegradation to final products through regulating its own nitrogen transformation in different dissolved oxygen systems. Bioresource Technology, 256: 61–68

    CAS  Google Scholar 

  39. Zhang Z, Wang C, He J, Wang H (2019). Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways. Frontiers of Environmental Science & Engineering, 13(5): 80

    Google Scholar 

  40. Zhao L, Zhang C, Bao M, Lu J (2018). Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems. Bioresource Technology, 247: 759–768

    CAS  Google Scholar 

  41. Zhao L M, Bao M T, Yan M, Lu J R (2016). Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions. Bioresource Technology, 216: 95–104

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by Key Program of the National Natural Science Foundation China (No. 41773082, 41573065) and the National Key Research project on Water Environment Pollution Control in China (No. 2017ZX07202002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ling Qian or Hui Wang.

Additional information

Highlights

• PAM degradation in thermophilic AD in comparison with mesophilic AD.

• PAM degradation and its impact on thermophilic and mesophilic AD.

• Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD.

• PAM degradation and microbial community analysis in thermophilic and mesophilic AD.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akbar, M., Khan, M.F.S., Qian, L. et al. Degradation of Polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration. Front. Environ. Sci. Eng. 14, 98 (2020). https://doi.org/10.1007/s11783-020-1277-2

Download citation

Keywords

  • Polyacrylamide (PAM) degradation
  • Acrylamide (AM)
  • Mesophilic anaerobic digestion
  • Thermophilic anaerobic digestion
  • Methane production