Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

Abstract

Microbial Fe(III) reduction is a significant driving force for the biogeochemical cycles of C, O, P, S, N, and dominates the natural bio-purification of contaminants in groundwater (e.g., petroleum hydrocarbons, chlorinated ethane, and chromium). In this review, the mechanisms and environmental significance of Fe(III) (hydro)oxides bioreduction are summarized. Compared with crystalline Fe(III) (hydro)oxides, amorphous Fe(III) (hydro)oxides are more bioavailable. Ligand and electron shuttle both play an important role in microbial Fe(III) reduction. The restrictive factors of Fe(III) (hydro) oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process. It will improve the bioavailability of crystalline Fe(III) (hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants. Furthermore, the approach to extract, culture, and incubate the functional Fe(III) reducing bacteria from actual complicated environment, and applying it to the bioremediation of organic, ammonia, and heavy metals contaminated groundwater will become a research topic in the future. There are a broad application prospects of Fe (III) (hydro)oxides bioreduction to groundwater bioremediation, which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system. The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater.

This is a preview of subscription content, access via your institution.

References

  1. Aburto-Medina A, Ball A S (2015). Microorganisms involved in anaerobic benzene degradation. Annals of Microbiology, 65(3): 1201–1213

    CAS  Article  Google Scholar 

  2. Al-Abadleh H A (2015). Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Advances, 5(57): 45785–45811

    CAS  Article  Google Scholar 

  3. Amstaetter K, Borch T, Kappler A (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85: 326–341

    CAS  Article  Google Scholar 

  4. Anderson R T, Lovley D R (2000). Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environmental Science & Technology, 34(11): 2261–2266

    CAS  Article  Google Scholar 

  5. Anderson R T, Rooney-Varga J N, Gaw C V, Lovley D R (1998). Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environmental Science & Technology, 32(9): 1222–1229

    CAS  Article  Google Scholar 

  6. Anderson R T, Vrionis H A, Ortiz-Bernad I, Resch C T, Long P E, Dayvault R, Karp K, Marutzky S, Metzler D R, Peacock A, White D C, Lowe M, Lovley D R (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10): 5884–5891

    CAS  Article  Google Scholar 

  7. Benner S G, Hansel C M, Wielinga B W, Barber T M, Fendorf S (2002). Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environmental Science & Technology, 36(8): 1705–1711

    CAS  Article  Google Scholar 

  8. Bjerg P L, Tuxen N, Reitzel L A, Albrechtsen H J, Kjeldsen P (2011). Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water, 49(5): 688–705

    CAS  Article  Google Scholar 

  9. Bongoua-Devisme A J, Cebron A, Kassin K E, Yoro G R, Mustin C, Berthelin J (2013). Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiology Journal, 30(4): 347–361

    CAS  Article  Google Scholar 

  10. Caccavo Jr F C, Das A (2002). Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals. Geomicrobiology Journal, 19(2): 161–177

    CAS  Article  Google Scholar 

  11. Chen Y, Wang H, Si Y B (2013). Research on the bioaccesibility of HgS by Shewanella oneidensis MR-1. Environmental Science, 34(11): 4466–4472 (in Chinese)

    CAS  Google Scholar 

  12. Childers S E, Ciufo S, Lovley D R (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416(6882): 767–769

    CAS  Article  Google Scholar 

  13. Clement J C, Shrestha J, Ehrenfeld J G, Jaffe P R (2005). Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology & Biochemistry, 37(12): 2323–2328

    CAS  Article  Google Scholar 

  14. Coates J D, Ellis D J, Gaw C V, Lovley D R (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49(4): 1615–1622

    CAS  Article  Google Scholar 

  15. Cutting R S, Coker V S, Fellowes J W, Lloyd J R, Vaughan D J (2009). Mineralogical and morphological constraints on the reduction of Fe (III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta, 73(14): 4004–4022

    CAS  Article  Google Scholar 

  16. Deng M (2010). Kariz wells in arid land and mountain-front depressed ground reservoir. Advances in Water Science, 21(6): 748–756 (in Chinese)

    Google Scholar 

  17. Eisele T C, Gabby K L (2014). Review of reductive leaching of iron by anaerobic bacteria. Mineral Processing and Extractive Metallurgy Review, 35(2): 75–105

    CAS  Article  Google Scholar 

  18. Essaid H I, Bekins B A, Cozzarelli I M (2015). Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resources Research, 51(7): 4861–4902

    CAS  Article  Google Scholar 

  19. Esther J, Sukla L B, Pradhan N, Panda S (2015). Fe (III) reduction strategies of dissimilatory iron reducing bacteria. Korean Journal of Chemical Engineering, 32(1): 1–14

    CAS  Article  Google Scholar 

  20. Farkas M, Szoboszlay S, Benedek T, Révész F, Veres P G, Kriszt B, Táncsics A (2017). Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiologica, 62(1): 63–71

    CAS  Article  Google Scholar 

  21. Fortin D, Langley S (2005). Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72(1–2): 1–19

    CAS  Article  Google Scholar 

  22. Fredrickson J K, Zachara J M, Kennedy D W, Dong H L, Onstott T C, Hinman N W, Li S M (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62(19–20): 3239–3257

    CAS  Article  Google Scholar 

  23. Gavaskar A R (1999). Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68(1–2): 41–71

    CAS  Article  Google Scholar 

  24. Hansel C M, Benner S G, Fendorf S (2005). Competing Fe (II)-induced mineralization pathways of ferrihydrite. Environmental Science & Technology, 39(18): 7147–7153

    CAS  Article  Google Scholar 

  25. Hansel C M, Benner S G, Neiss J, Dohnalkova A, Kukkadapu R K, Fendorf S (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16): 2977–2992

    CAS  Article  Google Scholar 

  26. Heald S, Jenkins R O (1994). Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Applied and Environmental Microbiology, 60(12): 4634–4637

    CAS  Article  Google Scholar 

  27. Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich M W, Conrad R, Kamagata Y (2015). Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Frontiers in Microbiology, 6(386): 1–16

    Google Scholar 

  28. Komulainen S, Pursiainen J, Peramaki P, Lajunen M (2013). Complexation of Fe(III) with water-soluble oxidized starch. Stärke, 65(3–4): 338–345

    CAS  Article  Google Scholar 

  29. Kossoff D, Dubbin W E, Alfredsson M, Edwards S J, Macklin M G, Hudson-Edwards K A (2014). Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51: 229–245

    CAS  Article  Google Scholar 

  30. Kostka J E, Nealson K H (1995). Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 29(10): 2535–2540

    CAS  Article  Google Scholar 

  31. Krumholz L R, Sharp R, Fishbain S S (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology, 62(11): 4108–4113

    CAS  Article  Google Scholar 

  32. Kügler S, Cooper R E, Wegner C E, Mohr J F, Wichard T, Küsel K (2019). Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. Science of the Total Environment, 646: 972–988

    Article  CAS  Google Scholar 

  33. Latta D E, Gorski C A, Boyanov M I, O’Loughlin E J, Kemner K M, Scherer M M (2012). Influence of magnetite stoichiometry on U(VI) reduction. Environmental Science & Technology, 46(2): 778–786

    CAS  Article  Google Scholar 

  34. Li L, Benson C H, Lawson E M (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Ground Water, 43(4): 582–596

    CAS  Article  Google Scholar 

  35. Li L, Qu Z, Jia R, Wang B, Wang Y, Qu D (2017). Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae. Science of the Total Environment, 607–608: 982–991

    Article  CAS  Google Scholar 

  36. Li R, Jiang Y, Xi B, Li M, Meng X, Feng C, Mao X, Liu H, Jiang Y (2018a). Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment. Journal of Hazardous Materials, 355: 10–16

    CAS  Article  Google Scholar 

  37. Li X, Huang Y, Liu H W, Wu C, Bi W, Yuan Y, Liu X (2018b). Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. Journal of Environmental Sciences (China), 64: 42–50

    Article  Google Scholar 

  38. Li X, Yuan Y, Huang Y, Liu H W, Bi Z, Yuan Y, Yang P B (2018c). A novel method of simultaneous NH4 + and NO3 removal using Fe cycling as a catalyst: Feammox coupled with NAFO. Science of the Total Environment, 631–632: 153–157

    Google Scholar 

  39. Liao Z, Cirpka O A (2011). Shape-free inference of hyporheic traveltime distributions from synthetic conservative and smart tracer tests in streams. Water Resources Research, 47(7): 1–14

    Article  Google Scholar 

  40. Lin B, Van Verseveld H W, Röling W F M (2002). Microbial aspects of anaerobic BTEX degradation. Biomedical and Environmental Sciences, 15(2): 130–144

    Google Scholar 

  41. Liu C, Kota S, Zachara J M, Fredrickson J K, Brinkman C K (2001). Kinetic analysis of the bacterial reduction of goethite. Environmental Science & Technology, 35(12): 2482–2490

    CAS  Article  Google Scholar 

  42. Liu C, Zachara J M, Foster N S, Strickland J (2007). Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environmental Science & Technology, 41(22): 7730–7735

    CAS  Article  Google Scholar 

  43. Lorah M M, Voytek M A (2004). Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology, 70(1–2): 117–145

    CAS  Article  Google Scholar 

  44. Lovley D R (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2): 85–93

    CAS  Article  Google Scholar 

  45. Lovley D R (2001). Bioremediation. Anaerobes to the rescue. Science, 293(5534): 1444–1446

    Article  Google Scholar 

  46. Lovley D R, Anderson R T (2000). Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8(1): 77–88

    CAS  Article  Google Scholar 

  47. Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J, Gorby Y A, Goodwin S (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 159(4): 336–344

    CAS  Article  Google Scholar 

  48. Lovley D R, Holmes D E, Nevin K P (2004). Advances in Microbial Physiology, vol. 49. Poole R K, ed., 219–286

  49. Lovley D R, Phillips E J (1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7): 1536–1540

    CAS  Article  Google Scholar 

  50. Lovley D R, Woodward J C, Chapelle F H (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature, 370(6485): 128–131

    CAS  Article  Google Scholar 

  51. Luu Y S, Ramsay J A (2003). Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology & Biotechnology, 19(2): 215–225

    CAS  Article  Google Scholar 

  52. Ma J, Ma C, Tang J, Zhou S, Zhuang L (2015). Mechanisms and applications of electron shuttle-mediated extracellular electron transfer. Progress in Chemistry, 27(12): 1833–1840 (in Chinese)

    CAS  Google Scholar 

  53. Machala L, Tucek J, Zboril R (2011). Polymorphous transformations of nanometric iron(III) oxide: A review. Chemistry of Materials, 23(14): 3255–3272

    CAS  Article  Google Scholar 

  54. Martin T A, Kempton J H (2000). In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: An experimental and modeling investigation. Environmental Science & Technology, 34(15): 3229–3234

    CAS  Article  Google Scholar 

  55. Mejia J, Roden E E, Ginder-Vogel M (2016). Influence of oxygen and nitrate on Fe (Hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science & Technology, 50(7): 3580–3588

    CAS  Article  Google Scholar 

  56. Nealson K H, Saffarini D (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48(1): 311–343

    CAS  Article  Google Scholar 

  57. Netto L E S, Stadtman E R (1996). The iron-catalyzed oxidation of dithiothreitol is a biphasic process: Hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Archives of Biochemistry and Biophysics, 333(1): 233–242

    CAS  Article  Google Scholar 

  58. O’Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M (2010). Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Environmental Science & Technology, 44(12): 4570–4576

    Article  CAS  Google Scholar 

  59. Park W, Nam Y, Lee M, Kim T (2009). Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3+ medium. Biotechnology and Bioprocess Engineering; BBE, 14(5): 680–685

    CAS  Article  Google Scholar 

  60. Puls R W, Blowes D W, Gillham R W (1999). Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 68(1–2): 109–124

    CAS  Article  Google Scholar 

  61. Qian F, Wang H, Ling Y, Wang G, Thelen M P, Li Y (2014). Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Letters, 14(6): 3688–3693

    CAS  Article  Google Scholar 

  62. Rayu S, Karpouzas D G, Singh B K (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23(6): 917–926

    CAS  Article  Google Scholar 

  63. Roden E E, Urrutia M M (2002). Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiology Journal, 19(2): 209–251

    CAS  Article  Google Scholar 

  64. Roden E E, Zachara J M (1996). Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30(5): 1618–1628

    CAS  Article  Google Scholar 

  65. Savard M M, Paradis D, Somers G, Liao S, Van Bochove E (2007). Winter nitrification contributes to excess NO3 in groundwater of an agricultural region: A dual-isotope study. Water Resources Research, 43(6): 1–10

    Article  CAS  Google Scholar 

  66. Sawayama S (2006). Possibility of anoxic ferric ammonium oxidation. Journal of Bioscience and Bioengineering, 101(1): 70–72

    CAS  Article  Google Scholar 

  67. Scott D T, Mcknight D M, Blunt-Harris E L, Kolesar S E, Lovley D R (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32(19): 2984–2989

    CAS  Article  Google Scholar 

  68. Shi Z, Zachara J M, Shi L, Wang Z, Moore D A, Kennedy D W, Fredrickson J K (2012). Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environmental Science & Technology, 46(21): 11644–11652

    CAS  Article  Google Scholar 

  69. Shrestha J, Rich J J, Ehrenfeld J G, Jaffe P R (2009). Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils laboratory, field demonstrations, and push-pull rate determination. Soil Science, 174(3): 156–164

    CAS  Article  Google Scholar 

  70. Thiruvenkatachari R, Vigneswaran S, Naidu R (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2): 145–156

    CAS  Article  Google Scholar 

  71. Tuntoolavest M, Burgos W D (2005). Anaerobic phenol oxidation by Geobacter metallireducens using various electron acceptors. Environmental Engineering Science, 22(4): 421–426

    CAS  Article  Google Scholar 

  72. Utkin I, Woese C, Wiegel J (1994). Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. International Journal of Systematic Bacteriology, 44(4): 612–619

    CAS  Article  Google Scholar 

  73. VanStone N, Przepiora A, Vogan J, Lacrampe-Couloume G, Powers B, Perez E, Mabury S, Sherwood Lollar B (2005). Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. Journal of Contaminant Hydrology, 78(4): 313–325

    CAS  Article  Google Scholar 

  74. Vogan J L, Focht R M, Clark D K, Graham S L (1999). Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68(1–2): 97–108

    CAS  Article  Google Scholar 

  75. Weber K A, Achenbach L A, Coates J D (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10): 752–764

    Google Scholar 

  76. Yang W H, Weber K A, Silver W L (2012). Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 5(8): 538–541

    CAS  Article  Google Scholar 

  77. Yao H, Conrad R, Wassmann R, Neue H U (1999). Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry, 47(3): 269–295

    CAS  Article  Google Scholar 

  78. You Y, Han J, Chiu P C, Jin Y (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science & Technology, 39(23): 9263–9269

    CAS  Article  Google Scholar 

  79. Zachara J M, Fredrickson J K, Li S M, Kennedy D W, Smith S C, Gassman P L (1998). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist, 83(11–12 Part 2): 1426–1443

    CAS  Article  Google Scholar 

  80. Zboril R, Mashlan M, Petridis D (2002). Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chemistry of Materials, 14(3): 969–982

    CAS  Article  Google Scholar 

  81. Zhang C L, Vali H, Romanek C S, Phelps T J, Liu S V (1998). Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83(11–12 Part 2): 1409–1418

    CAS  Article  Google Scholar 

  82. Zobrist J, Dowdle P R, Davis J A, Oremland R S (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 34(22): 4747–4753

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21606214) and the Water Pollution Control and Control of Major National Science and Technology Projects in China (No. 2018ZX07109-003). We also acknowledge the valuable comments from the reviewers and the associate editor.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Beidou Xi or Rui Li.

Additional information

Highlights

• Microbial Fe(III) reduction is closely related to the fate of pollutants.

• Bioavailability of crystalline Fe(III) oxide is restricted due to thermodynamics.

• Amorphous Fe(III) (hydro)oxides are more bioavailable.

• Enrichment and incubation of Fe(III) reducing bacteria are significant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Xi, B., Li, R. et al. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review. Front. Environ. Sci. Eng. 13, 89 (2019). https://doi.org/10.1007/s11783-019-1173-9

Download citation

Keywords

  • Microbial Fe(III) reduction
  • Mechanism
  • Groundwater contamination
  • Remediation