Skip to main content
Log in

Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Analysis of environmental samples for bacterial antibiotic resistance genes may have different objectives and analysis strategies. In some cases, the purpose was to study diversity and evolution of genes that could be grouped within a mechanism of antibiotic resistance. Different protocols have been designed for detection and confirmation that a functional gene was found. In this study, we present a sequence-based screening of candidate genes encoding beta-lactamases in 14 metagenomes of Antarctic microbial mats. The samples were obtained from different sites, representing diverse biogeographic regions of maritime and continental Antarctica. A protocol was designed based on generation of Hidden Markov Models from the four beta-lactamase classes by Ambler classification, using sequences from the Comprehensive Antibiotic Resistance Database (CARD). The models were used as queries for metagenome analysis and recovered contigs were subsequently annotated using RAST. According to our analysis, 14 metagenomes analyzed contain A, B and C beta-lactamase genes. Class D genes, however, were identified in 11 metagenomes. The most abundant was class C (46.8%), followed by classes B (35.5%), A (14.2%) and D (3.5%). A considerable number of sequences formed clusters which included, in some cases, contigs from different metagenomes. These assemblies are clearly separated from reference clusters, previously identified using CARD beta-lactamase sequences. While bacterial antibiotic resistance is a major challenge of public health worldwide, our results suggest that environmental diversity of beta-lactamase genes is higher than that currently reported, although this should be complemented with gene function analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Bayssari C, Olaitan A O, Dabboussi F, Hamze M, Rolain J M (2015). Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrobial Agents and Chemotherapy, 59(1): 745–746

    Article  Google Scholar 

  • Allen H K, Donato J, Wang H H, Cloud-Hansen K A, Davies J, Handelsman J (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4): 251–259

    Article  CAS  Google Scholar 

  • Allen H K, Moe L A, Rodbumrer J, Gaarder A, Handelsman J (2009). Functional metagenomics reveals diverse ß-lactamases in a remote Alaskan soil. The ISME Journal, 3(2): 243–251

    Article  CAS  Google Scholar 

  • Aziz R K, Bartels D, Best A A, DeJongh M, Disz T, Edwards R A, Formsma K, Gerdes S, Glass E M, Kubal M, Meyer F, Olsen G J, Olson R, Osterman A L, Overbeek R A, McNeil L K, Paarmann D, Paczian T, Parrello B, Pusch G D, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1): 75–90

    Article  Google Scholar 

  • Babic M, Hujer A M, Bonomo R A (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 9(3): 142–156

    Article  CAS  Google Scholar 

  • Bennett J W, Chung K T (2001). Alexander Fleming and the discovery of penicillin. Advances in Applied Microbiology, 49: 163–184

    Article  CAS  Google Scholar 

  • Berglund F, Österlund T, Boulund F, Marathe N P, Larsson D G J, Kristiansson E (2019). Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome, 7(1): 52–66

    Article  Google Scholar 

  • Bonnet R (2004). Growing group of extended-spectrum ß-lactamases: The CTX-M enzymes. Antimicrobial Agents and Chemotherapy, 48 (1): 1–14

    Article  CAS  Google Scholar 

  • Boolchandani M, D’Souza A W, Dantas G (2019). Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews. Genetics

    Google Scholar 

  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby G A, Kishony R, Kreiswirth B N, Kutter E, Lerner S A, Levy S, Lewis K, Lomovskaya O, Miller J H, Mobashery S, Piddock L J, Projan S, Thomas C M, Tomasz A, Tulkens P M, Walsh T R, Watson J D, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya H I (2011). Tackling antibiotic resistance. Nature Reviews. Microbiology, 9(12): 894–896

    Article  CAS  Google Scholar 

  • Chen Y P, Lee S H, Chou C H, Tsai H J (2012). Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese. Veterinary Microbiology, 154(3–4): 325–331

    Article  CAS  Google Scholar 

  • Coudron P E, Moland E S, Thomson K S (2000). Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology, 38(5): 1791–1796

    Article  CAS  Google Scholar 

  • Davies J, Davies D (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews: MMBR, 74(3): 417–433

    Article  CAS  Google Scholar 

  • de Been M, Lanza V F, de Toro M, Scharringa J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, Heederik D J, Fluit A C, Bonten M J, Willems R J, de la Cruz F, van Schaik W (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLOS Genetics, 10(12): e1004776–e1004793

    Article  Google Scholar 

  • Evans B A, Amyes S G (2014). OXA ß-lactamases. Clinical Microbiology Reviews, 27(2): 241–263

    Article  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23): 3150–3152

    Article  CAS  Google Scholar 

  • Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frère J M, Dideberg O (2004). Update of the standard numbering scheme for class B ß-lactamases. Antimicrobial Agents and Chemotherapy, 48(7): 2347–2349

    Article  CAS  Google Scholar 

  • Gibson M K, Forsberg K J, Dantas G (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal, 9(1): 207–216

    Article  CAS  Google Scholar 

  • Hall B G, Barlow M (2004). Evolution of the serine ß-lactamases: Past, present and future. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7(2): 111–123

    Article  CAS  Google Scholar 

  • Hall B G, Barlow M (2005). Revised Ambler classification of ß- lactamases. The Journal of Antimicrobial Chemotherapy, 55(6): 1050–1051

    Article  CAS  Google Scholar 

  • Högberg L D, Heddini A, Cars O (2010). The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences, 31(11): 509–515

    Article  Google Scholar 

  • Hughes K A, Thompson A (2004). Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environmental Pollution (Barking, Essex: 1987), 127(3): 315–321

    Article  CAS  Google Scholar 

  • Jacoby G A (2009). AmpC ß-lactamases. Clinical Microbiology Reviews, 22(1): 161–182

    Article  CAS  Google Scholar 

  • Jeong S H, Bae I K, Lee J H, Sohn S G, Kang G H, Jeon G J, Kim Y H, Jeong B C, Lee S H (2004). Molecular characterization of extendedspectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. Journal of Clinical Microbiology, 42(7): 2902–2906

    Article  CAS  Google Scholar 

  • June C M, Vallier B C, Bonomo R A, Leonard D A, Powers R A (2014). Structural origins of oxacillinase specificity in class D ß-lactamases. Antimicrobial Agents and Chemotherapy, 58(1): 333–341

    Article  Google Scholar 

  • Lisa M N, Palacios A R, Aitha M, González M M, Moreno D M, Crowder M W, Bonomo R A, Spencer J, Tierney D L, Llarrull L I, Vila A J (2017). A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-ß-lactamases. Nature Communications, 8(1): 538–549

    Article  Google Scholar 

  • Martínez J L (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887): 365–367

    Article  Google Scholar 

  • Naas T, Poirel L, Nordmann P (2008). Minor extended-spectrum ß- lactamases. Clinical Microbiology and Infection, 14(Suppl 1): 42–52

    Article  CAS  Google Scholar 

  • Nesme J, Cécillon S, Delmont T O, Monier J M, Vogel T M, Simonet P (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology: CB, 24(10): 1096–1100

    Article  CAS  Google Scholar 

  • Peng Y, Leung H C, Yiu S M, Chin F Y (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics (Oxford, England), 28(11): 1420–1428

    CAS  Google Scholar 

  • Pérez-Pérez F J, Hanson N D (2002). Detection of plasmid-mediated AmpC ß-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40(6): 2153–2162

    Article  Google Scholar 

  • Quince C, Walker A W, Simpson J T, Loman N J, Segata N (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9): 833–844

    Article  CAS  Google Scholar 

  • Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A S, Maziers N, Cuesta T, Hernando-Amado S, Clares I, Martínez J L, Coque T M, Baquero F, Lanza V F, Máiz L, Goulenok T, de Lastours V, Amor N, Fantin B, Wieder I, Andremont A, van Schaik W, Rogers M, Zhang X, Willems R J L, de Brevern A G, Batto J M, Blottière H M, Léonard P, Léjard V, Letur A, Levenez F, Weiszer K, Haimet F, Doré J, Kennedy S P, Ehrlich S D (2019). Prediction of the intestinal resistome by a threedimensional structure-based method. Nature Microbiology, 4(1): 112–123

    Article  Google Scholar 

  • Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013). Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, 5(1): 127–134

    Article  CAS  Google Scholar 

  • Shaikh S, Fatima J, Shakil S, Rizvi S M D, Kamal M A (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1): 90–101

    Article  CAS  Google Scholar 

  • Van Goethem MW, Pierneef R, Bezuidt O K I, Van De Peer Y, Cowan D A, Makhalanyane T P (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1): 40–52

    Article  Google Scholar 

  • Wallace J C, Port J A, Smith M N, Faustman E M (2017). FARME DB: A functional antibiotic resistance element database. Database (Oxford), 2017: baw165–7

    Article  Google Scholar 

  • Wright G D (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5): 589–594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gastón Azziz.

Additional information

Highlights

• Beta-lactamase genes were found in all samples from distant places in Antarctica.

• Class C beta-lactamase coding genes were the most frequently found.

• Diversity of sequences exceeds that of the beta-lactamases from clinical environment.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azziz, G., Giménez, M., Romero, H. et al. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. Front. Environ. Sci. Eng. 13, 44 (2019). https://doi.org/10.1007/s11783-019-1128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1128-1

Keywords

Navigation