Skip to main content
Log in

Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

There is a need to improve understanding of the effect of chlorine disinfection on antibiotic resistance genes (ARGs) in order to advance relevant drinking water, wastewater, and reuse treatments. However, few studies have explicitly assessed the physical effects on the DNA. Here we examined the effects of free chlorine (1–20 mg Cl2/L) on extracellular genomic, plasmid DNA and select ARGs. Chlorination was found to decrease the fluorometric signal of extracellular genomic and plasmid DNA (ranging from 0.005 to 0.05 μg/mL) by 70%, relative to a no-chlorine control. Resulting DNA was further subject to a fragment analysis using a Bioanalyzer, indicating that chlorination resulted in fragmentation. Moreover, chlorine also effectively deactivated both chromosomal- and plasmid-borne ARGs, mecA and tetA, respectively. For concentrations >2 mg Cl2//L × 30 min, chlorine efficiently reduced the qPCR signal when the initial concentration of ARGs was 105 copies/μL or less. Notably, genomic DNA and mecA gene signals were more readily reduced by chlorine than the plasmid-borne tetA gene (by ~2 fold). Based on the results of qPCR with short (~200 bps) and long amplicons (~1200 bps), chlorination could destroy the integrity of ARGs, which likely reduces the possibility of natural transformation. Overall, our findings strongly illustrate that chlorination could be an effective method for inactivating extracellular chromosomal- and plasmid-borne DNA and ARGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae J, Oh E, Jeon B (2014). Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrobial Agents and Chemotherapy, 58(12): 7573–7575

    Article  Google Scholar 

  • Beebee T J (1991). Analysis, purification and quantification of extracellular DNA from aquatic environments. Freshwater Biology, 25(3): 525–532

    Article  CAS  Google Scholar 

  • Bellanger X, Guilloteau H, Bonot S, Merlin C (2014). Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: A practical approach for a critical review. Science of the Total Environment, 493: 872–882

    Article  CAS  Google Scholar 

  • Bergeron S, Boopathy R, Nathaniel R, Corbin A, LaFleur G (2015). Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. International Biodeterioration & Biodegradation, 102: 370–374

    Article  CAS  Google Scholar 

  • Bertolla F, Simonet P (1999). Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Research in Microbiology, 150(6): 375–384

    Article  CAS  Google Scholar 

  • Bichai F, Barbeau B, Dullemont Y, Hijnen W (2010). Role of predation by zooplankton in transport and fate of protozoan (oo)cysts in granular activated carbon filtration. Water Research, 44(4): 1072–1081

    Article  CAS  Google Scholar 

  • Blokesch M (2016). Natural competence for transformation. Current Biology, 26(21): R1126–R1130

    Article  CAS  Google Scholar 

  • Bukholm G, Tannaes T, Kjelsberg A B B, Smith-Erichsen N (2002). An outbreak of multidrug-resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Infection Control and Hospital Epidemiology, 23(08): 441–446

    Article  Google Scholar 

  • Burrows C J, Muller J G (1998). Oxidative nucleobase modifications leading to strand scission. Chemical Reviews, 98(3): 1109–1152

    Article  CAS  Google Scholar 

  • Chang P H, Juhrend B, Olson T M, Marrs C F, Wigginton K R (2017). Degradation of extracellular antibiotic resistance genes with UV254 treatment. Environmental Science & Technology, 51(11): 6185–6192

    Article  CAS  Google Scholar 

  • Clowes R C (1972). Molecular structure of bacterial plasmids. Bacteriological Reviews, 36(3): 361–405

    Article  CAS  Google Scholar 

  • Coniey E C, Saunders V A, Saunders J R (1986). Deletion and rearrangement of plasmid DNA during transformation of Escherichia coli with linear plasmid molecules. Nucleic Acids Research, 14(22): 8905–8917

    Article  Google Scholar 

  • Craun G F (2018). Waterborne Diseases in the US. Boca Raton, FL: CRC Press

    Google Scholar 

  • Dalrymple O K, Stefanakos E, Trotz M A, Goswami D Y (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental, 98(1–2): 27–38

    Article  CAS  Google Scholar 

  • Davison J (1999). Genetic exchange between bacteria in the environment. Plasmid, 42(2): 73–91

    Article  CAS  Google Scholar 

  • de la Cruz F, Davies J (2000). Horizontal gene transfer and the origin of species: Lessons from bacteria. Trends in Microbiology, 8(3): 128–133

    Article  Google Scholar 

  • del Solar G, Giraldo R, Ruiz-Echevarría M J, Espinosa M, Díaz-Orejas R (1998). Replication and control of circular bacterial plasmids. Microbiology and Molecular Biology Reviews, 62(2): 434–464

    Article  Google Scholar 

  • Diep B A, Gill S R, Chang R F, Phan T H, Chen J H, Davidson M G, Lin F, Lin J, Carleton H A, Mongodin E F, Sensabaugh G F, Perdreau-Remington F (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet, 367(9512): 731–739

    Article  CAS  Google Scholar 

  • Dodd M C (2012). Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 14(7): 1754–1771

    Article  CAS  Google Scholar 

  • Dukan S, Touati D (1996). Hypochlorous acid stress in Escherichia coli: Resistance, DNA damage, and comparison with hydrogen peroxide stress. Journal of Bacteriology, 178(21): 6145–6150

    Article  CAS  Google Scholar 

  • Eischeid A C, Meyer J N, Linden K G (2009). UV disinfection of adenoviruses: Molecular indications of DNA damage efficiency. Applied and Environmental Microbiology, 75(1): 23–28

    Article  CAS  Google Scholar 

  • Fernando D M, Tun H M, Poole J, Patidar R, Li R, Mi R, Amarawansha G E A, Fernando W G D, Khafipour E, Farenhorst A, Kumar A (2016). Detection of antibiotic resistance genes in source and drinking water samples from a First Nations Community in Canada. Applied and Environmental Microbiology, 82(15): 4767–4775

    Article  CAS  Google Scholar 

  • Fleige S, Pfaffl M W (2006). RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine, 27(2–3): 126–139

    Article  CAS  Google Scholar 

  • Freeman C N, Scriver L, Neudorf K D, Truelstrup Hansen L, Jamieson R C, Yost C K (2018). Antimicrobial resistance gene surveillance in the receiving waters of an upgraded wastewater treatment plant. FACETS, 3(1): 128–138

    Article  Google Scholar 

  • Fricke W F, Wright M S, Lindell A H, Harkins D M, Baker-Austin C, Ravel J, Stepanauskas R (2008). Insights into the environmental resistance gene pool from the genome sequence of the multidrugresistant environmental isolate Escherichia coli SMS-3-5. Journal of Bacteriology, 190(20): 6779–6794

    Article  CAS  Google Scholar 

  • Frischer M E, Stewart G J, Paul J H (1994). Plasmid transfer to indigenous marine bacterial populations by natural transformation. FEMS Microbiology Ecology, 15(1–2): 127–135

    Article  CAS  Google Scholar 

  • Harrison E, Brockhurst M A (2012). Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends in Microbiology, 20(6): 262–267

    Article  CAS  Google Scholar 

  • Hawkins C L, Davies M J (2002). Hypochlorite-induced damage to DNA, RNA, and polynucleotides: Formation of chloramines and nitrogen-centered radicals. Chemical Research in Toxicology, 15(1): 83–92

    Article  CAS  Google Scholar 

  • Howe K J, Crittenden J C, Hand D W, Trussell R R, Tchobanoglous G (2012). Principles of Water Treatment. Hoboken, NJ: John Wiley & Sons

    Google Scholar 

  • Huang J J, Hu H Y, Wu Y H, Wei B, Lu Y (2013). Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere, 90(8): 2247–2253

    Article  CAS  Google Scholar 

  • Jia S, Shi P, Hu Q, Li B, Zhang T, Zhang X X (2015). Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination. Environmental Science & Technology, 49(20): 12271–12279

    Article  CAS  Google Scholar 

  • Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013). Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Science of the Total Environment, 458–460: 267–272

    Article  Google Scholar 

  • Jiang X, Ellabaan M M H, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer M O A, Lee S Y (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nature Communications, 8: 15784

    Article  CAS  Google Scholar 

  • Kulkarni P, Olson N D, Paulson J N, Pop M, Maddox C, Claye E, Rosenberg Goldstein R E, Sharma M, Gibbs S G, Mongodin E F, Sapkota A R (2018). Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water. Science of the Total Environment, 639: 1126–1137

    Article  CAS  Google Scholar 

  • Lau H Y, Ashbolt N J (2009). The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water. Journal of Applied Microbiology, 107(2): 368–378

    Article  CAS  Google Scholar 

  • Lerman L S, Tolmach L J (1959). Genetic transformation. II. The significance of damage to the DNA molecule. Biochimica et Biophysica Acta, 33(2): 371–387

    Article  CAS  Google Scholar 

  • Li Y H, Lau P C, Lee J H, Ellen R P, Cvitkovitch D G (2001). Natural genetic transformation of Streptococcus mutans growing in biofilms. Journal of Bacteriology, 183(3): 897–908

    Article  CAS  Google Scholar 

  • Liu Q, Li M, Liu X, Zhang Q, Liu R, Wang Z, Shi X, Quan J, Shen X, Zhang F (2018a). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6

    Article  CAS  Google Scholar 

  • Liu S S, Qu H M, Yang D, Hu H, Liu W L, Qiu Z G, Hou A M, Guo J, Li J W, Shen Z Q, Jin M (2018b). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a fullscale wastewater treatment plant. Water Research, 136: 131–136

    Article  Google Scholar 

  • Lorenz M G, Wackernagel W (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3): 563–602

    Article  CAS  Google Scholar 

  • Masotti A, Preckel T (2006). Analysis of small RNAs with the Agilent 2100 Bioanalyzer. Nature Methods, 3(8): 658

    Article  Google Scholar 

  • McKinney C W, Loftin K A, Meyer M T, Davis J G, Pruden A (2010). tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental Science & Technology, 44(16): 6102–6109

    Article  CAS  Google Scholar 

  • McKinney C W, Pruden A (2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental Science & Technology, 46(24): 13393–13400

    Article  CAS  Google Scholar 

  • Metch J W, Ma Y, Pruden A, Vikesland P J (2015). Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environmental Science. Water Research & Technology, 1(6): 823–831

    Article  CAS  Google Scholar 

  • Öncü N B, Menceloğlu Y Z, Balcioğlu I A (2011). Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. Journal of Advanced Oxidation Technologies, 14(2): 196–203

    Article  Google Scholar 

  • Park J, Park W (2011). Phenotypic and physiological changes in Acinetobacter sp. strain DR1 with exogenous plasmid. Current Microbiology, 62(1): 249–254

    Article  CAS  Google Scholar 

  • Pecson B M, Ackermann M, Kohn T (2011). Framework for using quantitative PCR as a nonculture based method to estimate virus infectivity. Environmental Science & Technology, 45(6): 2257–2263

    Article  CAS  Google Scholar 

  • Pinto A J, Xi C, Raskin L (2012). Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environmental Science & Technology, 46(16): 8851–8859

    Article  CAS  Google Scholar 

  • Prütz W A (1996). Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Archives of Biochemistry and Biophysics, 332(1): 110–120

    Article  Google Scholar 

  • Prütz W A (1998). Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Archives of Biochemistry and Biophysics, 349(1): 183–191

    Article  Google Scholar 

  • Sanganyado E, Gwenzi W (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Science of the Total Environment, 669: 785–797

    Article  CAS  Google Scholar 

  • Shah A D, Liu Z Q, Salhi E, Höfer T, Werschkun B, Von Gunten U (2015). Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: Influence of water quality parameters. Environmental Science. Water Research & Technology, 1(4): 465–480

    Article  CAS  Google Scholar 

  • Sinha S, Redfield R J (2012). Natural DNA uptake by Escherichia coli. PLoS One, 7(4): e35620

    Article  CAS  Google Scholar 

  • Srinivasan A, Lehmler H J, Robertson L W, Ludewig G (2001). Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. Toxicological Sciences, 60(1): 92–102

    Article  CAS  Google Scholar 

  • Su H C, Liu Y S, Pan C G, Chen J, He L Y, Ying G G (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Science of the Total Environment, 616–617: 453–461

    Article  Google Scholar 

  • Suquet C, Warren J J, Seth N, Hurst J K (2010). Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells. Archives of Biochemistry and Biophysics, 493(2): 135–142

    Article  CAS  Google Scholar 

  • Thomas C M, Nielsen K M (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews. Microbiology, 3(9): 711–721

    Article  CAS  Google Scholar 

  • Thomas J M, Ashbolt N J (2011). Do free-living amoebae in treated drinking water systems present an emerging health risk? Environmental Science & Technology, 45(3): 860–869

    CAS  Google Scholar 

  • Tornevi A, Simonsson M, Forsberg B, Säve-Söderbergh M, Toljander J (2016). Efficacy of water treatment processes and endemic gastrointestinal illness: A multi-city study in Sweden. Water Research, 102: 263–270

    Article  CAS  Google Scholar 

  • Volkmann H, Schwartz T, Kirchen S, Stofer C, Obst U (2007). Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Molecular and Cellular Probes, 21(2): 125–133

    Article  CAS  Google Scholar 

  • Wen G, Xu X, Huang T, Zhu H, Ma J (2017). Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Research, 125: 132–140

    Article  CAS  Google Scholar 

  • Xu L, Ouyang W, Qian Y, Su C, Su J, Chen H (2016). High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environmental Pollution, 213: 119–126

    Article  CAS  Google Scholar 

  • Xu L, Zhang C, Xu P, Wang X C (2017). Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: Culturability, membrane permeability, metabolism, and genetic damage. Journal of Environmental Sciences-China, 65: 356–366

    Article  Google Scholar 

  • Yoon Y, Dodd M C, Lee Y (2018). Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmidencoded antibiotic resistance genes. Environmental Science: Water Research & Technology, 4(9): 1239–1251

    CAS  Google Scholar 

  • Yuan Q B, Guo M T, Yang J (2015). Fate of antibiotic resistant bacteria and genes during wastewater chlorination: Implication for antibiotic resistance control. PLoS One, 10(3): e0119403

    Article  Google Scholar 

  • Zhang T, Hu Y, Jiang L, Yao S, Lin K, Zhou Y, Cui C (2019). Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chemical Engineering Journal, 358: 589–597

    Article  CAS  Google Scholar 

  • Zhang X, Wu B, Zhang Y, Zhang T, Yang L, Fang H H P, Ford T, Cheng S (2009a). Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology (London, England), 18(6): 652–660

    Article  CAS  Google Scholar 

  • Zhang X, Zhang T, Fang H H (2009b). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3): 397–414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation Partnership in International Research and Education (PIRE): OISE Award # 1545756, “Halting Environmental Antimicrobial Resistance Dissemination”, National Key Research and Development Program of China-International collaborative project from Ministry of Science and Technology (No. 2017YFE0107300), and Virginia Tech ICTAS Center for Science and Engineering of the Exposome (SEE) and The Virginia Tech National Center for Earth and Environmental Nanotechnology National Science Foundation Grant (NNCI- 1542100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Vikesland or Amy Pruden.

Additional information

Highlights

• Extracellular DNA structure damaged by chlorination was characterized.

• Integrity of extracellular ARG genetic information after chlorination was determined.

• Typical chlorine doses will likely effectively diminish extracellular DNA and ARGs.

• Plasmid DNA/ARGs were less readily broken down than genomic DNA.

• The Bioanalyzer methodology effectively documented damage incurred to DNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Chen, S., Yu, X. et al. Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination. Front. Environ. Sci. Eng. 13, 38 (2019). https://doi.org/10.1007/s11783-019-1124-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1124-5

Key words

Navigation