Skip to main content
Log in

Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO 2 · was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl had a negative effect on CT degradation, and high concentration of Cl displayed much strong inhibition. Ten mmol·L–1HCO 3 promoted CT degradation, while 100 mmol·L1NO 3 inhibited the degradation of CT, but SO 2–4 promoted CT degradation in the presence of FA. The measured Cl–concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi J, Choi K, Lee W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. Journal of Hazardous Materials, 2009, 162(2–3): 1151–1158

    Article  CAS  Google Scholar 

  2. TÁmara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology, 2004, 38(6): 1866–1876

    Article  Google Scholar 

  3. Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O–) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886

    Article  CAS  Google Scholar 

  4. Gu X G, Lu S G, Li L, Qiu Z F, Sui Q, Lin K F, Luo Q S. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029–11036

    Article  CAS  Google Scholar 

  5. Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9): 1213–1223

    CAS  Google Scholar 

  6. Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental, 2013, 129(2): 325–332

    Article  CAS  Google Scholar 

  7. Fang G, Gao J, Dionysiou D D, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 2013, 47(9): 4605–4611

    Article  CAS  Google Scholar 

  8. Ahmad M, Teel A L, Watts R J. Mechanism of persulfate activation by phenols. Environmental Science & Technology, 2013, 47(11): 5864–5871

    Article  CAS  Google Scholar 

  9. Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4- chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology, 2010, 71(3): 302–307

    Article  CAS  Google Scholar 

  10. House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962, 62(3): 185–203

    Article  CAS  Google Scholar 

  11. Pennington D E, Haim A. Stoichiometry and mechanism of the chromium(II)—peroxydisulfate reaction. Journal of the American Chemical Society, 2002, 90(14): 3700–3704

    Article  Google Scholar 

  12. Peyton G R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 1993, 41(1–3): 91–103

    Article  CAS  Google Scholar 

  13. Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society, 1951, 73(7): 3055–3059

    CAS  Google Scholar 

  14. Watts R J, Bottenberg B C, HessT F, Jensen M D, Teel A L. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environmental Science & Technology, 1999, 33(19): 3432–3437

    Article  CAS  Google Scholar 

  15. Bielski B H, Cabelli D E, Arudi R L, Ross A B. Reactivity of HO2/O–2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1985, 14(4): 1041–1100

    Article  CAS  Google Scholar 

  16. Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination, 2003, 12(2): 207–228

    Article  CAS  Google Scholar 

  17. Mora V C, Rosso J A, Carrillo Le Roux G, Mártire D O, Gonzalez M C. Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere, 2009, 75(10): 1405–1409

    Article  CAS  Google Scholar 

  18. Lin M Z, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroishi D. Pluse radiolysis of sodium formate aqueous solution up to 400°C: absorption spectra, kinetics and yield of carboxyl radical CO 2 ·. Radiation Physics and Chemistry, 2008, 77(10–12): 1208–1212

    Article  CAS  Google Scholar 

  19. Liang C, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73(9): 1540–1543

    Article  CAS  Google Scholar 

  20. Xu M, Gu X, Lu S, Qiu Z, Sui Q, Miao Z, Zang X, Wu X. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials, 2015, 286: 7–14

    Article  CAS  Google Scholar 

  21. Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027–1284

    Article  CAS  Google Scholar 

  22. Mulazzani Q G, D’Angelantonio M, Venturi M, Hoffman M Z, Rodgers MA. Interaction of formate and oxalate ions with radiationgenerated radicals in aqueous solution. Methylviologen as a mechanistic probe. Journal of Physical Chemistry, 1986, 90(21): 5347–5352

    CAS  Google Scholar 

  23. Berkovic A M, Gonzalez MC, Russo N, Michelini MC, Pis Diez R, Mártire D O. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation. Journal of Physical Chemistry A, 2010, 114(49): 12845–12850

    Article  CAS  Google Scholar 

  24. Das T N, Ghanty T K, Pal H. Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: mechanism derived from pulse radiolysis measurements and ab initio mo calculations. Journal of Physical Chemistry A, 2003, 107(31): 5998–6006

    Article  CAS  Google Scholar 

  25. Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238–1244

    Article  CAS  Google Scholar 

  26. CooperW J, Cramer C J, Martin N H, Mezyk S P, O’Shea K E, von Sonntag C. Free radical mechanisms for the treatment of methyl tertbutyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chemical Reviews, 2009, 109(3): 1302–1345

    Article  Google Scholar 

  27. Flyunt R, Schuchmann M N, von Sonntag C. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion, CO 2 ·, in aqueous solution. Chemistry (Weinheim an der Bergstrasse, Germany), 2001, 7(4): 796–799

    CAS  Google Scholar 

  28. Morkovinik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055–1075

    Article  Google Scholar 

  29. Buxton G V, Bydder M, Salmon G A. The reactivity of chlorine atoms in aqueous solution, Part II. The reactivity of chlorine atoms in aqueous solution II: The equilibrium SO 4 · + Cl↔SO 2–4 + Cl·. Physical Chemistry Chemical Physics, 1999, 1(2): 269–273

    Article  CAS  Google Scholar 

  30. Regino C A, Richardson D E. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 2007, 360(14): 3971–3977

    Article  CAS  Google Scholar 

  31. Draganic Z D, Negrón-Mendoza A, Sehested K, Vujoševic S I, Navarro-Gonzáles R, Albarrán-SanchezM G, Draganic I G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1991, 38(3): 317–321

    Article  CAS  Google Scholar 

  32. Padmaja S, Neta P, Huie R E. Rate constants for some reactions of inorganic radicals with inorganic ions. Temperature and solvent dependence. International Journal of Chemical Kinetics, 1993, 25 (6): 445–455

    Article  CAS  Google Scholar 

  33. Neta P, Grodkowsk J, Ross A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1996, 25(3): 709–1050

    Article  CAS  Google Scholar 

  34. McCormick M L, Adriaens P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology, 2004, 38(4): 1045–1053

    Article  CAS  Google Scholar 

  35. McCormick M L, Bouwer E J, Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environmental Science & Technology, 2002, 36(3): 403–410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Gu, X., Lu, S. et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Front. Environ. Sci. Eng. 10, 438–446 (2016). https://doi.org/10.1007/s11783-015-0798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0798-6

Keywords

Navigation