Effect of processing parameters on flow behaviors and microstructure during high temperature deformation of GH4586 superalloy

GH4586 合金高温变形过程中工艺参数对流动行为和微观组织的影响


The apparent activation energy for deformation (Q) and strain rate sensitivity (m) of GH4586 superalloy are calculated and the variation trend is reasonably explained by the microstructure observations. Constitutive modelling of this superalloy is established and the processing maps at different strains are constructed. The results show that the Q value is in the range of 751.22–878.29 kJ/mol. At a temperature of 1060 °C, strain rate of 0.001 s−1, and strain of 0.65, the m value of GH4586 superalloy reaches a maximum of 0.42. The optimal processing parameter of GH4586 superalloy is at a deformation temperature of 1050 °C and a strain rate of 0.001 s−1. The domains of flow instability notably expand with increasing strain during high temperature deformation of GH4586 superalloy.


本文计算了 GH4586 高温合金的表观变形激活能(Q)和应变速率敏感性指数(m), 并基于微观组织观察分析了其变化的原因. 本文还建立了 GH4586 高温合金的本构模型和不同应变下的热加工图. 研究结果表明: 表观变形激活能值(Q)是 751.22~878.29 kJ/mol. 当变形温度为 1060 °C、 应变速率 为 0.001 s−1、 应变为 0.65 时, GH4586 高温合金的应变速率敏感性指数(m)达到最大值 0.42. 该合金的最优加工参数是变形温度 1050 °C 和应变速率 0.001 s−1. GH4586 合金高温变形过程中的非稳定区域随着应变的增加而显著增加.

This is a preview of subscription content, access via your institution.


  1. [1]

    XU H, ZHANG Z J, ZHANG P, CUI C Y, JIN T, ZHANG Z F. Formation of nanograins in Ni-Co based superalloys compressed quasistatically at high temperature [J]. Scr Mater, 2017, 136: 92–96. DOI: https://doi.org/10.1016/j.scriptamat.2017.04.008.

    Article  Google Scholar 

  2. [2]

    XU X Y, MA X D, WANG H, ZHANG Y, CHANG J W, XU Y, SUN G A, LÜ W J, GAO Y K. Characterization of residual stresses and microstructural features in an Inconel 718 forged compressor disc [J]. Trans Nonferrous Met Soc China, 2019, 29: 569–578. DOI: https://doi.org/10.1016/S1003-6326(19)64965-4.

    Article  Google Scholar 

  3. [3]

    PAN Q L, LI B, WANG Y, ZHANG Y W, YIN Z M. Characterization of hot deformation behavior of Ni-base superalloy René41 using processing map [J]. Mater Sci Eng A, 2013, 585: 371–378. DOI: https://doi.org/10.1016/j.msea.2013.07.066.

    Article  Google Scholar 

  4. [4]

    PU E X, ZHENG W J, SONG Z G, FENG H, DONG H. Hot deformation characterization of nickel-based superalloy UNS10276 through processing map and Microstructural studies [J]. J Alloys Compd, 2017, 694: 617–631. DOI: https://doi.org/10.1016/j.jallcom.2016.10.029.

    Article  Google Scholar 

  5. [5]

    SHORE F M, MORAKABATI M, ABBASI S M, MOMENI A. Hot deformation behavior of Incoloy 901 through hot tensile testing [J]. J Mater Eng Perform, 2014, 23: 1424–1433. DOI: https://doi.org/10.1007/s11665-014-0863-5.

    Article  Google Scholar 

  6. [6]

    ZHANG P, ZHU Q, CHEN G, QIN H Y, WANG C J. Grain size based low cycle fatigue life prediction model for nickel-based superalloy [J]. Trans Nonferrous Met Soc China, 2018, 28: 2102–2106. DOI: https://doi.org/10.1016/S1003-6326(18)64854-X.

    Article  Google Scholar 

  7. [7]

    LOYDA A, HERNÁDEZ-MUŇOZ G M, REYES L A, ZAMBRANO-ROBLEDO P. Microstructure modeling of a Ni-Fe-based superalloy during the rotary forging process [J]. J Mater Eng Perform, 2016, 25: 2128–2137. DOI: https://doi.org/10.1007/s11665-016-2104-6.

    Article  Google Scholar 

  8. [8]

    WANG M J, SUN C Y, FU M W, LIU Z L, QIAN L Y. Study on the dynamic recrystallization mechanisms of Inconel 740 superalloy during hot deformation [J]. J Alloys Compd, 2020, 820: 153325. DOI: https://doi.org/10.1016/j.jallcom.2019.153325.

    Article  Google Scholar 

  9. [9]

    HU Y L, LIN X, LI Y L, ZHANG S Y, GAO X H, LIU F G, LI X, HUANG W D. Plastic deformation behavior and dynamic recrystallization of Inconel 625 superalloy fabricated by directed energy deposition [J]. Mater Des, 2020, 186: 108359. DOI: https://doi.org/10.1016/j.matdes.2019.108359.

    Article  Google Scholar 

  10. [10]

    ZHANG C, ZHANG L, SHEN W F, XU Q H, CAI Y. The processing map and microstructure evolution of Ni-Cr-Mo-based C276 Superalloy during hot compression [J]. J Alloys Compd, 2017, 728: 1269–1278. DOI: https://doi.org/10.1016/j.jallcom.2017.09.107.

    Article  Google Scholar 

  11. [11]

    WANG Y, WANG J S, DONG J S, LI A M, LI Z J, XIE G, LOU L H. Hot deformation characteristics and hot working window of as-cast large-tonnage GH3535 Superalloy ingot [J]. J Mater Sci Technol, 2018, 34: 2439–2446. DOI: https://doi.org/10.1016/j.jmst.2018.04.001.

    Article  Google Scholar 

  12. [12]

    HUA Y Q, RONG Z, YE Y X, CHEN K M, CHEN R F, XUE Q, LIU H X. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy [J]. Appl Surf Sci, 2015, 330: 439–444. DOI: https://doi.org/10.1016/j.apsusc.2015.01.033.

    Article  Google Scholar 

  13. [13]

    ZHANG B J, ZHAO G P, JIAO L Y, XU G H, QIN H Y, FENG D. Influence of hot working process on microstructure of superalloy GH4586 [J]. Acta Metall Sinica, 2005, 41: 351–356.

    Google Scholar 

  14. [14]

    HUMPHREYS F J, HATHERLY M. Recrystallization and related annealing phenomena [M]. Amsterdam, Boston, 2004.

  15. [15]

    FU R, LI F L, YIN F J, FENG D, TIAN Z L, CHANG L T. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS) superalloy Rene88DT during isothermal compression [J]. Mater Sci Eng A, 2015, 638: 152–164. DOI: https://doi.org/10.1016/j.msea.2015.04.068.

    Article  Google Scholar 

  16. [16]

    LI L, LI M Q. Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps [J]. Mater Sci Eng A, 2017, 698: 302–312. DOI: https://doi.org/10.1016/j.msea.2017.05.034.

    Article  Google Scholar 

  17. [17]

    WU H X, GE C C, YAN Q Z, XIA M, ZHU T T Z L, HU Q P. Plastic deformation behavior of spray formed superalloy FGH100 [J]. Mater Sci Eng A, 2017, 699: 156–164. DOI: https://doi.org/10.1016/j.msea.2017.02.063.

    Article  Google Scholar 

  18. [18]

    COURTNEY T H. Mechanical behavior of materials [M]. New York: McGraw Hill, 1990.

    Google Scholar 

  19. [19]

    PATTERSON J W D, RIDLEY N. Effect of phase proportions on deformation and cavitation of superplastic α/β brass [J]. J Mater Sci, 1981, 16: 457–464. DOI: https://doi.org/10.1007/BF00738637.

    Article  Google Scholar 

  20. [20]

    SEMIATIN S L, BIELER T R. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure [J]. Acta Mater, 2001, 49: 3565–3573. DOI: https://doi.org/10.1016/S1359-6454(01)00236-1.

    Article  Google Scholar 

  21. [21]

    JALADURGAM N R, KANJARLA A K. Hot deformation characteristics and microstructure evolution of hastelloy C-276 [J]. Mater Sci Eng A, 2018, 712: 240–254. DOI: https://doi.org/10.1016/j.msea.2017.11.056.

    Article  Google Scholar 

  22. [22]

    TRIMBLE D, SHIPLEY H, LEA L, JARDINE A, O’DONNELL G E. Constitutive analysis of biomedical grade Co-27Cr-5Mo alloy at high strain rates [J]. Mater Sci Eng A, 2017, 682: 466–474. DOI: https://doi.org/10.1016/j.msea.2016.11.071.

    Article  Google Scholar 

  23. [23]

    HAJARI A, MORAKABATI M, ABBASI S M, BADRI H. Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy [J]. Mater Sci Eng A, 2017, 681: 103–113. DOI: https://doi.org/10.1016/j.msea.2016.11.002.

    Article  Google Scholar 

  24. [24]

    WANG M H, WEI K, LI X J, TU A Z. Constitutive modeling for high temperature flow behavior of a high-strength manganese brass [J]. J Cent South Univ, 2018, 25: 1560–1572. DOI: https://doi.org/10.1007/s11771-018-3848-y.

    Article  Google Scholar 

  25. [25]

    ZHANG C, ZHANG L W, SHEN W F, LI M F, GU S D. Characterization of hot deformation behavior of Hastelloy C-276 using constitutive equation and processing map [J]. J Mater Eng Perform, 2015, 24: 149–157. DOI: https://doi.org/10.1007/s11665-014-1310-3.

    Article  Google Scholar 

  26. [26]

    SUN C Y, LIU G, ZHANG Q D, LI R, WANG L L. Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test [J]. Mater Sci Eng A, 2014, 595: 92–98. DOI: https://doi.org/10.1016/j.msea.2013.10.051.

    Article  Google Scholar 

  27. [27]

    PRASAD Y V R K, GEGEL H L, DORAIVELU S M, MALAS J C, MORGAN J T, LARK K A, BARKER D R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall Trans A, 1984, 15: 1883–1892. DOI: https://doi.org/10.1007/BF02664902.

    Article  Google Scholar 

  28. [28]

    PRASAD Y V R K, SASIDHARA S. Hot working guide: A compendium of processing maps [C]// ASM International. Materials Park, OH, 1997: 25–157.

  29. [29]

    ZHANG T, ZHANG S H, LI L, LU S H, GONG H. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. J Cent South Univ, 2019, 26: 2930–2942. DOI: https://doi.org/10.1007/s11771-019-4225-1.

    Article  Google Scholar 

Download references

Author information




LUO Jiao provided the overarching research goals and edited the draft of manuscript. LI Xiang-yang conducted the literature review and wrote the first draft of the manuscript. LI Cong analyzed the calculated results. LI Miao-quan provided the concept. All authors revised the final version.

Corresponding author

Correspondence to Jiao Luo 罗皎.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Project(2020JC-17) supported by the Science Fund for Distinguished Young Scholars from Shaanxi Province, China; Project(51705425) supported by the National Natural Science Foundation of China; Project(2019-QZ-04) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China; Projects(3102019PY007, 3102019MS0403) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, Xy., Li, C. et al. Effect of processing parameters on flow behaviors and microstructure during high temperature deformation of GH4586 superalloy. J. Cent. South Univ. 28, 338–350 (2021). https://doi.org/10.1007/s11771-021-4606-0

Download citation

Key words

  • GH4586 superalloy
  • apparent activation energy for deformation
  • strain rate sensitivity
  • constitutive model
  • processing maps


  • GH4586 高温合金
  • 表观变形激活能
  • 应变速率敏感性指数
  • 本构模型
  • 加工图