Effects of CO2 gassy-supercritical phase transition on corrosion behaviors of carbon steels in saturated vapor environment

饱和水蒸气环境中 CO2 气相- CO2 超临界相相变对碳钢腐蚀行为的影响


Corrosion behaviors of P110 and N80 tubular steels in CO2 gas phase and supercritical (S-CO2) phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM, EDS, XRD, XPS and cross-section analysis techniques. With the increase in CO2 partial pressure, the average corrosion rate increased first and then decreased. The average corrosion rate reached the maximum value under the near-critical pressure. When CO2 partial pressure further increased to be above the critical pressure, the average corrosion rate gradually decreased and local aggregation of molecules was weakened.


通过腐蚀失重实验研究了 P110 和 N80 钢管在气相 CO2 -饱和水蒸气环境和超临界 CO2 -饱和水蒸气环境中的腐蚀速率变化, 并通过 SEM, EDS, XRD, XPS 和截面技术对腐蚀产物进行了表面分析. 结果表明: 随着 CO2 分压的增加, 试样平均腐蚀速率先升高后降低; 在临界压力附近, 试样平均腐蚀速率达到最大值; 在高于临界压力后, 随着CO2 分压的进一步增加, 分子局部聚集现象减弱, 试样平均腐蚀速率降低.

This is a preview of subscription content, access via your institution.


  1. [1]

    GALE J, DAVISON J. Transmission of CO2-safety and economic considerations [J]. Energy, 2003, 29(9): 1319–1328. DOI: https://doi.org/10.1016/j.energy.2004.03.090.

    Google Scholar 

  2. [2]

    ZHANG G A, LIU D, LI Y Z, GUO X P. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition [J]. Corrosion Science, 2017, 120: 107–120. DOI: https://doi.org/10.1016/j.corsci.2017.02.012.

    Article  Google Scholar 

  3. [3]

    NESIC S, POSTLETHWAITE J. Modelling of CO2 corrosion mechanisms [M]// Modelling Aqueous Corrosion. Dordrecht: Springer, 1994: 317–335. DOI: https://doi.org/10.1007/978-94-011-1176-8-15.

    Google Scholar 

  4. [4]

    LIU Zhi-yong, ZHAO Tian-liang, LIU Ran-ke, JIA Jing-huan, DU Cui-wei, LI Xiao-gang. Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment [J]. Journal of Central South University, 2016, 23(4): 757–764. DOI: https://doi.org/10.1007/s11771-016-3121-1.

    Article  Google Scholar 

  5. [5]

    XU Ming-he, LI Wei-hong, ZHOU Yi, YANG Xiao-xian, WANG Zhe, LI Zheng. Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments [J]. International Journal of Greenhouse Gas Control, 2016, 51: 357–368. DOI: https://doi.org/10.1016/j.ijggc.2016.06.002.

    Article  Google Scholar 

  6. [6]

    XIANG Yong, LI Chen, HESITAO W, LONG Zheng-wei, YAN Wei. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment [J]. Journal of Supercritical Fluids, 2018, 138: 132–142. DOI: https://doi.org/10.1016/j.supflu.2018.04.009.

    Article  Google Scholar 

  7. [7]

    SUI Peng-fei, SUN Jian-bo, HUA Yong, LIU Hui-feng, ZHOU Ming-nan, ZHANG Yu-can, LIU Jia-hang, WANG Yong. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]. International Journal of Greenhouse Gas Control, 2018, 73: 60–69. DOI: https://doi.org/10.1016/j.ijggc.2018.04.003.

    Article  Google Scholar 

  8. [8]

    HUA Yong, BARKER R, NEVILLE A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2 [J]. Journal of Supercritical Fluids, 2015, 97: 224–237. DOI: https://doi.org/10.1016/j.supflu.2014.12.005.

    Article  Google Scholar 

  9. [9]

    SUN Chong, SUN Jian-bo, LIU Su-biao, WANG Yong. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corrosion Science, 2018, 137: 151–162. DOI: https://doi.org/10.1016/j.corsci.2018.03.041.

    Article  Google Scholar 

  10. [10]

    SUN Chong, WANG Yong, SUN Jian-bo, LIN Xue-qiang, LI Xue-da, LIU Hui-feng, CHENG Xiang-kun. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Journal of Supercritical Fluids, 2016, 116: 70–82. DOI: https://doi.org/10.1016/j.supflu.2016.05.006.

    Article  Google Scholar 

  11. [11]

    SUN Chong, SUN Jian-bo, WANG Yong, SUI Peng-fei, LIN Xue-qiang, LIU Hui-feng, CHENG Xiang-kun, ZHOU Ming-nan. Effect of impurity interaction on the corrosion film characteristics and corrosion morphology evolution of X65 steel in water-saturated supercritical CO2 system [J]. International Journal of Greenhouse Gas Control, 2017, 65: 117–127. DOI: https://doi.org/10.1016/j.ijggc.2017.09.002.

    Article  Google Scholar 

  12. [12]

    SUN Jian-bo, SUN Chong, WANG Yong. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2365–2375. DOI: https://doi.org/10.1021/acs.iecr.7b04870.

    Article  Google Scholar 

  13. [13]

    SUN Jian-bo, SUN Chong, ZHANG Guo-an, LI Xue-da, ZHAO Wei-min, JIANG Tao, LIU Hui-feng, CHENG Xiang-kun, WANG Yong. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corrosion Science, 2016, 107: 31–40. DOI: https://doi.org/10.1016/j.corsci.2016.02.017.

    Article  Google Scholar 

  14. [14]

    CHOI Y S, NEŠIĆ S. Effect of water content on the corrosion behavior of carbon steel in supercritical CO2 phase with impurities [C]// Corrosion 2011. Houston, Texas: NACE International, 2011: 11377.

    Google Scholar 

  15. [15]

    HUA Yong, BARKER R, CHARPENTIER T, WARD M, NEVILLE A. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems [J]. The Journal of Supercritical Fluids, 2015, 98: 183–193. DOI: https://doi.org/10.1016/j.supflu.2014.12.009.

    Article  Google Scholar 

  16. [16]

    GUO Shao-pin, XU Lin-ning, ZHANG Lei, CHANG Wei, LU Ming-xu. Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water [J]. Corrosion Science, 2016, 110: 123–133. DOI: https://doi.org/10.1016/j.corsci.2016.04.033.

    Article  Google Scholar 

  17. [17]

    BECK J, FEDKINA M, LVOV S, ZIOMEK-MOROZ M E, HOLCOMB G, TYLCZAK J, ALMAN D. In situ electrochemical corrosion measurements of carbon steel in supercritical CO2 using a membrane-coated electrochemical probe [J]. ECS Transactions, 2013, 45(19): 39–50. DOI: https://doi.org/10.1021/acs.iecr.7b04870.

    Article  Google Scholar 

  18. [18]

    THODLA R, FRANCOIS A, SRIDHAR N. Materials performance in supercritical CO2 environments [C]// Corrosion 2009. Atlanta, Georgia: NACE International, 2009: 09255.

    Google Scholar 

  19. [19]

    SIM S, BOCHER F, COLE I S, CHEN X B, BIRBILIS N. Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines [J]. Corrosion, 2014, 70(2): 185–195. DOI: https://doi.org/10.5006/0944.

    Article  Google Scholar 

  20. [20]

    BECK J, LVOV S, FEDKIN M V, ZIOMEK-MOROZ M, HOLCOMB G, TYLCZAK J, ALMAN D. Electrochemical system to study corrosion of metals in supercritical CO2 fluids [C]// Corrosion 2011. Houston, Texas: NACE International, 2011: 11380.

    Google Scholar 

  21. [21]

    TUCKER S C, MADDOX M W. The effect of solvent density inhomogeneities on solute dynamics in supercritical fluids: a theoretical perspective [J]. The Journal of Physical Chemistry B, 1998, 102: 2437–2453. DOI: https://doi.org/10.1021/jp972382+.

    Article  Google Scholar 

  22. [22]

    NISHIKAWA K, OCHIAI H, SAITOW K, MORITA T. Static inhomogeneity of supercritical ethylene studied by small-angle X-ray scattering [J]. Chemical Physics, 2003, 286(2,3): 421–430. DOI: https://doi.org/10.1016/S0301-0104(02)00935-7.

    Article  Google Scholar 

  23. [23]

    TACHIKAWA T, AKIYAMA K, YOKOYAMA C, TERO-KUBOTA S. Local density effects on the hyperfine splitting constant and line width of TEMPO radical in gaseous and supercritical carbon dioxide [J]. Chemical Physics Letters, 2003, 376(3,4): 350–357. DOI: https://doi.org/10.1016/S0009-2614(03)00995-3.

    Article  Google Scholar 

  24. [24]

    EGOROV S A. Local density enhancement in neat supercritical fluids: Dependence on the interaction potential [J]. Chemical Physics Letters, 2002, 354(1,2): 140–147. DOI: https://doi.org/10.1016/S0009-2614(02)00129-X.

    Article  Google Scholar 

  25. [25]

    MUKHOPADHYAY M, DALVI S V. Partial molar volume fraction of solvent in binary (CO2-solvent) solution for solid solubility predictions [J]. The Journal of Supercritical Fluids, 2004, 29(3): 221–230. DOI: https://doi.org/10.1016/S0896-8446(03)00087-1.

    Article  Google Scholar 

  26. [26]

    ZHANG Jian-liang, LIU Jun-cheng, GAO Liang, ZHANG Xiao-gang, HOU Zhen-shan, HAN Bu-xing, WANG Jun, DONG Bao-zhong, RONG Li-xia, ZHAO Hui. Small-angle X-ray scattering study on correlation length and density fluctuations in a supercritical CO2-water mixture [J]. Fluid Phase Equilibria, 2002, 198(2): 251–256. DOI: https://doi.org/10.1016/S0378-3812(01)00767-1.

    Article  Google Scholar 

  27. [27]

    ZHANG Jian-ling, ZHANG Xiao-gang, HAN Bu-xing, HE Jun, LIU Zhi-min, YANG Guan-ying. Study on intermolecular interactions in supercritical fluids by partial molar volume and isothermal compressibility [J]. The Journal of Supercritical Fluids, 2002, 22(1): 15–19. DOI: https://doi.org/10.1016/S0896-8446(01)00107-3.

    Article  Google Scholar 

  28. [28]

    HESS G, FROITZHEIM H, BAUMGARTNER C. The adsorption and catalytic decomposition of CO2 on Fe (111) surfaces studied with high resolution EELS [J]. Surface Science, 1995, 331: 138–143. DOI: https://doi.org/10.1016/0039-6028(95)00177-8.

    Article  Google Scholar 

  29. [29]

    FERNANDES F W, CAMPOS T M B, CIVIDANES L S, SIMONETTI E A N, THIM G P. Adsorbed water on iron surface by molecular dynamics [J]. Applied Surface Science, 2016, 362: 70–78. DOI: https://doi.org/10.1016/j.apsusc.2015.11.143.

    Article  Google Scholar 

  30. [30]

    BAI Run-sheng, YANG R T. A thermodynamically consistent Langmuir model for mixed gas adsorption [J]. Journal of Colloid and Interface Science, 2001, 239(2): 296–302. DOI: https://doi.org/10.1006/jcis.2001.7563.

    Article  Google Scholar 

  31. [31]

    KRAVANJA G, ŠKERGET M, KNEZ Ž, HRNČIČ M K. Diffusion coefficients of water and propylene glycol in supercritical CO2 from pendant drop tensiometry [J]. The Journal of Supercritical Fluids, 2018, 133: 1–8. DOI: https://doi.org/10.1016/j.supflu.2017.09.022.

    Article  Google Scholar 

  32. [32]

    TAYLOR R, KRISHNA R. Multicomponent mass transfer [M]. John Wiley & Sons, 1993.

  33. [33]

    MAGALHAES A L, DA SILVA F A, SILVA C M. Free-volume model for the diffusion coefficients of solutes at infinite dilution in supercritical CO2 and liquid H2O [J]. The Journal of Supercritical Fluids, 2013, 74: 89–104. DOI: https://doi.org/10.1016/j.supflu.2012.12.004.

    Article  Google Scholar 

  34. [34]

    MORA-MENDOZA J L, TURGOOSE S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions [J]. Corrosion Science, 2002, 44(6): 1223–1246. DOI: https://doi.org/10.1016/S0010-938X(01)00141-X.

    Article  Google Scholar 

  35. [35]

    PESSU F, BARKER R, NEVILLE A. Understanding pitting corrosion behavior of X65 carbon steel in CO2-saturated environments: The temperature effect [J]. Corrosion, 2016, 72(1): 78–94. DOI: https://doi.org/10.5006/1338.

    Google Scholar 

  36. [36]

    WU Qian-lin, ZHANG Zhong-hua, DONG Xiao-ming, YANG Jian-qiang. Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments [J]. Corrosion Science, 2013, 75: 400–408. DOI: https://doi.org/10.1016/j.corsci.2013.06.024.

    Article  Google Scholar 

  37. [37]

    HOU S X, MAITLAND G C, TRUSLER J P M. Measurement and modeling of the phase behavior of the (carbon dioxide+ water) mixture at temperatures from 298.15 K to 448.15 K [J]. The Journal of Supercritical Fluids, 2013, 73: 87–96. DOI: https://doi.org/10.1016/j.supflu.2012.11.011.

    Article  Google Scholar 

Download references

Author information




ZENG De-zhi designed the project. HUANG Zhi-yao and YU Zhi-ming carried out data processing, performed data analysis, and contributed to the paper writing. SHI Shan-zhi, LIU Cong-ping and YI Yong-gang offered some valuable suggestions for the contents of the manuscript. SUN Yi-cheng and TIAN Gang offered the specimen, performed data analysis. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to De-zhi Zeng 曾德智.

Ethics declarations

ZENG De-zhi, HUANG Zhi-yao, YU Zhi-ming, SHI Shan-zhi, YI Yong-gang, LIU Cong-ping, TIAN Gang and SUN Yi-cheng declare that they have no conflict of interest.

Additional information

Foundation item: Project(21JCQN0066) supported by the Youth Science & Technology Foundation of Sichuan Province, China

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Dz., Huang, Zy., Yu, Zm. et al. Effects of CO2 gassy-supercritical phase transition on corrosion behaviors of carbon steels in saturated vapor environment. J. Cent. South Univ. 28, 325–337 (2021). https://doi.org/10.1007/s11771-021-4605-1

Download citation

Key words

  • carbon capture and storage
  • supercritical carbon dioxide
  • corrosion product
  • corrosion mechanism


  • 碳捕获和储存
  • 超临界 CO2
  • 腐蚀产物
  • 腐蚀机理