Skip to main content
Log in

Electrochemical oxidation of reactive brilliant orange X-GN dye on boron-doped diamond anode

硼掺杂金刚石阳极电化学氧化活性橙X-GN 偶氮染料废水

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond (BDD) anode was investigated. The BDD electrodes were deposited on the niobium (Nb) substrates by the hot filament chemical vapor deposition method. The effects of processing parameters, such as film thickness, current density, supporting electrolyte concentration, initial solution pH, solution temperature, and initial dye concentration, were evaluated following the variation in the degradation efficiency. The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy, Raman spectroscopy, and electrochemical workstation; and the degradation of X-GN was estimated using UV-Vis spectrophotometry. Further, the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN. After 3 h of treatment, 100% color and 63.2% total organic carbon removal was achieved under optimized experimental conditions: current density of 100 mA/cm2, supporting electrolyte concentration of 0.05 mol/L, initial solution pH 3.08, and solution temperature of 60 °C.

摘要

本文研究了硼掺杂金刚石阳极(BDD)对活性艳橙X-GN 染料的电化学氧化的影响。BDD 电 极是采用采用热丝化学气相沉积法(HFCVD)在铌(Nb)衬底表面制备的。研究了工艺参数(如膜 的厚度、电流密度、电解液浓度、溶液pH 值、溶液温度、染料初始浓度)对降解效率的影响。采用 扫描电镜(SEM)、拉曼光谱和电化学工作站表征了BDD 的微观结构和电化学性能,采用紫外—可见 分光光度计测量了X-GN 降解性能。结果表明,BDD 薄膜厚度对电化学降解X-GN 有显著影响。在 优化的实验条件下(电流密度为100 mA/cm2、电解质浓度为0.05 mol/L、溶液初始pH 值为3.08 和溶 液温度为60 °C)处理废水3 h 后可得到100%的色度移除率和63.2%的总有机碳量(TOC)去除率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FORGACS E, CSERHÁTI T, OROS G. Removal of synthetic dyes from wastewaters: A review [J]. Environment International, 2004, 30(7): 953–971. DOI: 10.1016/j.envint. 2004.02.001.

    Article  Google Scholar 

  2. BARROS W R P, STETER J R, LANZA M R V, MOTHEO A J. Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode [J]. Electrochimica Acta, 2014, 143(10): 180–187. DOI: 10.1016/j.electacta.2014.07.141.

    Article  Google Scholar 

  3. EL-GHENYMY A, CENTELLAS F, GARRIDO J A, RODRIGUEZ R M, SIRES I, CABOT P L, BRILLAS E. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors [J]. Electrochimica Acta, 2014, 130: 568–576. DOI: 10.1016/j.electacta.2014.03.066.

    Article  Google Scholar 

  4. ZHONG Deng-jie, YANG Ji, XU Yun-lan, JIA Jin-ping, WANG Ya-lin, SUN Tong-hua. De-colorization of reactive brilliant Orange X-GN by a novel rotating electrochemical disc process [J]. Journal of Environmental Sciences, 2008, 20(8): 927–932. DOI: 10.1016/S1001-0742(08)62188-9.

    Article  Google Scholar 

  5. MONDAL S. Methods of dye removal from dye house effluent: An overview [J]. Environmental Engineering Science, 2008, 25(3): 383–396. DOI: 10.1089/ees.2007. 0049.

    Article  MathSciNet  Google Scholar 

  6. KOPARAL A S, YAVUZ Y, BAKIR ÖGÜTVEREN U B. Electroadsorption of Acilan Blau dye from textile effluents by using activated carbon-perlite mixtures [J]. Water Environment Research A: 2002, 74(6): 521–525. DOI: 10.2175/106143002X140314.

    Article  Google Scholar 

  7. CHEN Jun-shui, LIU Mei-chuan, ZHANG Ji-dong, XIAN Yue-zhong, JIN Li-tong. Electrochemical degradation of bromopyrogallol red in presence of cobalt ions [J]. Chemosphere, 2003, 53(9): 1131–1136. DOI: 10.1016/S0045-6535(03)00581-2.

    Article  Google Scholar 

  8. PETRUCCI E, MONTANARO D. Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode [J]. Chemical Engineering Journal, 2011, 174(2, 3): 612–618. DOI: 10.1016/j.cej.2011. 09.074.

    Article  Google Scholar 

  9. CHEN Qiu-qiang, WU Ping-xiao, LI Yuan-yuan, ZHU Neng-wu, DANG Zhi. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation [J]. Journal of Hazardous Materials, 2009, 168(2, 3): 901–908. DOI: 10.1016/j.jhazmat.2009.02.107.

    Article  Google Scholar 

  10. WU Jin-hua, LIN Guang-hui, LI Ping, YIN Wei-zhao, WANG Xiang-de, YANG Bo. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2 [J]. Water Science & Technology A: Journal of the International Association on Water Pollution Research, 2013, 67(3): 572–578. DOI: 10.2166/wst.2012.596.

    Article  Google Scholar 

  11. LI Dong-yu, ZHU Ji-shu, WU Jin-hua, YIN Wei-zhao, LIANG Hao, LIN Guang-hui. Development of an activated carbon-supported zero-valent iron catalyst (AC-Fe-0) for enhancing degradation of reactive brilliant orange and reducing iron sludge production [J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 949–956. DOI: 10.1002/ep.12298.

    Article  Google Scholar 

  12. CHEN Qiu-qiang, WU Ping-xiao, ZHI Dang, ZHU Neng-wu, LI Ping, WU Jin-hua, WANG Xiang-de. Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN [J]. Separation & Purification Technology, 2010, 71(3): 315–323. DOI: 10.1016/j.seppur.2009.12.017.

    Article  Google Scholar 

  13. KAPALKA A, FÓTI G, COMNINELLIS C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment [J]. Journal of Applied Electrochemistry, 2008, 38(1): 7–16. DOI: 10.1007/s10800- 007-9365-6.

    Article  Google Scholar 

  14. COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochimica Acta, 1994, 39(11, 12): 1857–1862. DOI: https://doi.org/10.1016/0013-4686(94)85175-1.

    Article  Google Scholar 

  15. ABUZAID N S. Electrochemical oxidation of phenol using graphite anodes [J]. Separation Science and Technology, 1999, 34(4): 699–708. DOI: 10.1081/SS-100100675.

    Article  Google Scholar 

  16. CHEN Guo-hua. Electrochemical technologies in wastewater treatment [J]. Separation & Purification Technology, 2004, 38(1): 11–41. DOI: 10.1016/j.seppur.2003.10.006.

    Article  Google Scholar 

  17. AWAD H S, GALWA N A. Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2, electrode in the presence of different conductive electrolyte and effect of various operating factors [J]. Chemosphere, 2005, 61(9): 1327–1335. DOI: 10.1016/j.chemosphere.2005.03.054.

    Article  Google Scholar 

  18. WU W Y, HUANG Z H, LIM T T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water [J]. Applied Catalysis A: General, 2014, 480: 58–78. DOI: 10.1016/j.apcata.2014.04.035.

    Article  Google Scholar 

  19. KRAFT A, STADELMANN M, BLASCHKE M. Anodic oxidation with doped diamond electrodes: A new advanced oxidation process [J]. Journal of Hazardous Materials, 2003, 103(3): 247–261. DOI: 10.1016/j.jhazmat.2003.07.006.

    Article  Google Scholar 

  20. BENISEK M, MARCANO G, BETZLER C. Recent developments of electro-oxidation in water treatment—A review [J]. Journal of Electroanalytical Chemistry, 2001, 37(2): 127–134. DOI: 10.1016/j.jelechem.2015.06.016.

    Google Scholar 

  21. FENG Yu-jie, LV Jiang-wei, LIU Jun-feng, GAO Na, PENG Hong-yan, CHEN Yu-qiang. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition [J]. Applied Surface Science, 2011, 257(8): 3433–3439. DOI: 10.1016/j.apsusc.2010.11.041.

    Article  Google Scholar 

  22. PANIZZA M, CERISOLA G. Application of diamond electrodes to electrochemical processes [J]. Electrochimica Acta, 2005, 51(2): 191–199. DOI: 10.1016/j.electacta.2005. 04.023.

    Article  Google Scholar 

  23. TSANTAKI E, VELEGRAKI T, KATSAOUNIS A, MANTZAVINOS D. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode [J]. Journal of Hazardous Materials, 2011, 207–208(12): 91–96. DOI: 10.1016/j.jhazmat.2011.03.107.

    Google Scholar 

  24. DENG Ze-jun, LONG Hang-yu, WEI Qiu-ping, YU Zhi-ming, ZHOU Bo, WANG Yi-jia, ZHANG Long, LI Sha-sha, MA Li, XIE You-neng, MIN Jie. High-performance non-enzymatic glucose sensor based on nickelmicrocrystalline graphite-boron doped diamond complex electrode [J]. Sensors and Actuators B-Chemical, 2017, 242: 825–834. DOI: 10.1016/j.snb.2016.09.176.

    Article  Google Scholar 

  25. YAVUZ Y, SHAHBAZI R. Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor [J]. Separation & Purification Technology, 2012, 85(6): 130–136. DOI: 10.1016/j.seppur.2011.10.001.

    Article  Google Scholar 

  26. SOLANO A M S, ARAÚJO C K C D, MELO J V D, PERALTA-HERNANDEZ J M, da SILVA D R, MARTINEZ-HUITLE C A. Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: Viability and disadvantages of this electrochemical technology [J]. Applied Catalysis B: Environmental, 2013, 130–131: 112–120. DOI: 10.1016/j.apcatb.2012.10.023.

    Article  Google Scholar 

  27. AQUINO J M, PEREIRA G F, ROCHAFILHO R C, BOCCHI N, BIAGGIO S R. Electrochemical degradation of a real textile effluent using boron-doped diamond or ß-PbO2 as anode [J]. Journal of Hazardous Materials, 2011, 192(3): 1275–1282. DOI: 10.1016/j.jhazmat.2011.06.039.

    Article  Google Scholar 

  28. LONG Fen, WEI Qiu-ping, YU Zhi-ming, LUO Jia-qi, ZHANG Xiong-wei, LONG Hang-yu, WU Xian-zhe. Effects of temperature and Mo2C layer on stress and structural properties in CVD diamond film grown on Mo foil [J]. Journal of Alloys & Compounds, 2013, 579(23): 638–645. DOI: 10.1016/j.jallcom.2013.06.146.

    Article  Google Scholar 

  29. ZHOU Bo, YU Zhi-ming, WEI Qiu-ping, LONG Hang-yu, XIE You-neng, WANG Yi-jia. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode [J]. Applied Surface Science, 2016, 377: 406–415. DOI: 10.1016/j.apsusc.2016.03.045.

    Article  Google Scholar 

  30. BRILLAS E, MARTÍNEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review [J]. Applied Catalysis B: Environmental, 2015, 166–167(3): 603–643. DOI: 10.1016/j.apcatb.2014.11.016.

    Article  Google Scholar 

  31. ROCHA J H B, GOMES M M S, DOS SANTOS E V, de MOURA E C M, DA SLIVA D R, QUIROZ M A, MARTINEZ-HUITLE C A. Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and indirect oxidation [J]. Electrochimica Acta, 2014, 140: 419–426. DOI: 10.1016/j.electacta.2014.06.030.

    Article  Google Scholar 

  32. QI Yao, LONG Hang-yu, MA Li, WEI Qui-ping, LI Si-te, YU Zhi-ming, HU Jing-yuan, LIU Pei-zhi, WANG Yi-jia, MENG Ling-cong. Enhanced selectivity of boron doped diamond electrodes for the detection of dopamine and ascorbic acid by increasing the film thickness [J]. Applied Surface Science, 2016, 390: 882–889. DOI: 10.1016/j.apsusc.2016.08.158.

    Article  Google Scholar 

  33. LIU Xue-zhang, LUO Hao, SU Xu, YU Zhi-ming. Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition [J]. Journal of Central South University, 2015, 22(3): 835–841. DOI: 10.1007/s11771- 015-2590-y.

    Article  Google Scholar 

  34. LI Hong-dong, ZHANG Tong, LI Liu-an, LUE, Xian-yi, LI Bo, JIN Zeng-sun, ZOU Guang-tian. Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films [J]. Journal of Crystal Growth, 2010, 312(12): 1986–1991. DOI: 10.1016/j.jcrysgro.2010.03.020.

    Article  Google Scholar 

  35. LONG Hang-yu, LUO Hao, LUO Jia-qi, XIE You-neng, DENG Ze-jun, ZHANG Xiong-wei, WANG Yi-jia, WEI Qiu-ping, YU Zhi-ming. The concentration gradient of boron along the growth direction in boron doped chemical vapor deposited diamond [J]. Materials Letters, 2015, 157: 34–37. DOI: 10.1016/j.matlet.2015.05.069.

    Article  Google Scholar 

  36. LIU Na, ZHU He-kang, WEI Qiu-ping LONG Hang-yu, DENG Ze-jun, YU Zhi-ming, XIE You-neng, WANG Jian, MA Li, ZHOU Ke-chao. A niobium and nitrogen co-doped DLC film electrode and its electrochemical properties [J]. Journal of the Electrochemical Society, 2017, 164(14): H1–H8. DOI: 10.1149/2.1001714jes.

    Google Scholar 

  37. BERNARD M, DENEUVILLE A, MURET P. Nondestructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy [J]. Diamond and Related Materials, 2004, 13(2): 282–286. DOI: 10.1016/j.diamond.2003.10.051.

    Article  Google Scholar 

  38. BOGDANOWICZ R, FABIANSKA A, GOLUNSKI L,, SOBASZEK M, GNYBA M, RYL J, DAROWICKI K, OSSOWSKI T, JANSSENS S D, HAENEN K, SIEDLECKA E M. Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes [J]. Diamond & Related Materials, 2013, 39: 82–88. DOI: 10.1016/j.diamond.2013.08.004.

    Article  Google Scholar 

  39. KROTOVA M D, PLESKOV Y V, VARNIN V P, TEREMETSKAYA I G.. The effect of CVD-diamond film thickness on the electrochemical properties of synthetic diamond thin-film electrodes [J]. Journal of Applied Electrochemistry, 2010, 40(10): 1839–1844. DOI: 10.1007/s10800-010-0111-0.

    Article  Google Scholar 

  40. PANIZZA M, MICHAUD P A, CERISOLA G, COMNINELLIS C. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes [J]. Journal of Electroanalytical Chemistry, 2001, 507(1, 2): 206–214. DOI: 10.1016/S0022-0728(01)00398-9.

    Article  Google Scholar 

  41. MICHAUD P A, PANIZZA M, OUATTARA L, DIACO T, FOTI G, COMINELLIS C. Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes[J]. Journal of Applied Electrochemistry, 2003, 33(2): 151–154. DOI: 10.1023/A:1024084924058.

    Article  Google Scholar 

  42. ÖMÜR GÖKKUS. Oxidative degradation of Basic Black 3 by electro-generated Fenton’s reagent using carbon fiber cathode [J]. Clean Technologies and Environmental Policy, 2016, 18(5): 1–10. DOI: 10.1007/s10098-016-1134-y.

    Google Scholar 

  43. SUN Jian-hui, SUN Sheng-peng, FAN Mao-hong, GUO Hui-qin, LEE Yi-fan, SUN Rui-xia. Oxidative decomposition of p-nitroaniline in water by solar photo- Fenton advanced oxidation process [J]. Journal of Hazardous Materials, 2008, 153(1, 2): 187–193. DOI: 10.1016/j.jhazmat. 2007.08.037.

    Article  Google Scholar 

  44. VAHID B, KHATAEE A. Photoassisted electrochemical recirculation system with boron-doped diamond anode and carbon nanotubes containing cathode for degradation of a model azo dye [J]. Electrochimica Acta, 2013, 88(2): 614–620. DOI: 10.1016/j.electacta.2012.10.069.

    Article  Google Scholar 

  45. HAMZA M, ABDELHEDI R, BRILLAS E, SIRES I. Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes [J]. Journal of Electroanalytical Chemistry, 2009, 627(1, 2): 41–50. DOI: 10.1016/j.jelechem. 2008.12.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-ping Wei  (魏秋平).

Additional information

Foundation item: Project(2016YEB0301402) supported by the National Key Research and Development Program of China; Project(51601226) supported by the National Natural Science Foundation of China; Project supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, China; Project supported by State Key Laboratory of Powder Metallurgy, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zhang, Mq., Zhu, Cw. et al. Electrochemical oxidation of reactive brilliant orange X-GN dye on boron-doped diamond anode. J. Cent. South Univ. 25, 1825–1835 (2018). https://doi.org/10.1007/s11771-018-3872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3872-y

Key words

关键词

Navigation