Journal of Central South University

, Volume 25, Issue 5, pp 1226–1239 | Cite as

Numerical study of RC beams under various loading rates with LS-DYNA

  • Leila Majidi
  • Nima Usefi
  • Reza Abbasnia


Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load—midspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.

Key words

strain rate dynamic loading RC beam impact loading finite element LS-DYNA 

不同加载速率下钢筋混凝土梁的LS-DYNA 数值研究


准确认识高应变率荷载作用下混凝土的受力性能以减少损伤的发生具有重要意义。由于实验研 究的复杂性和较高的成本,数值研究是适合的方法。因此,本文采用LS-DYNA 软件对有限元法在不 同荷载作用下预测混凝土性能的能力进行评价。首先,给出该方法;然后,在不同条件下分3 个阶段 进行验证。荷载—跨中位移的计算结果表明,试验结果与有限元结果吻合较好。利用有限元方法对不 同载荷作用下的梁进行分析,验证有限元方法在不同载荷下的受力分析能力。此外,该方法对不同加 载速率、不同加载条件下钢筋混凝土梁的性能也具有较好的评价能力。


应变率 动态载荷 RC 梁 冲击载荷 有限元 LS-DYN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ZHAO H, GARY G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33: 3363–3375. DOI: 10.1016/0020-7683(95)00186-7.CrossRefzbMATHGoogle Scholar
  2. [2]
    LU Y, LI Q. Appraisal of pulse-shaping technique in Split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 23: 363–390. DOI: 10.1260/2041-4196.1.3.363.CrossRefGoogle Scholar
  3. [3]
    LI X, WANG S, WENG L, HUANG L, ZHOU T, ZHOU J. Damage constitutive model of different age concretes under impact load [J]. Journal of Central South University, 2015, 22: 693–700. DOI:10.1007/s11771-015-2572-0.CrossRefGoogle Scholar
  4. [4]
    FREW D J, FORRSTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure [J]. Bar Experimental Mechanics, 2002, 42: 93–106. DOI: 10.1007/BF02411056.CrossRefGoogle Scholar
  5. [5]
    YAN D, LIN G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36: 1371–1378. DOI: 10.1016/j.cemconres.2006.03.003.CrossRefGoogle Scholar
  6. [6]
    BISCHOFF P, PERY S. Compressive behaviour of concrete at high strain rates [J] Materials and Structures, 1991, 24: 425–450. DOI: 10.1007/BF02472016.CrossRefGoogle Scholar
  7. [7]
    KULKARNI S M, SHAH S P. Response of RC beams at high strain rates [J]. ACI Structural Journal, 1998, 95: 705–715. Google Scholar
  8. [8]
    REMENNIKOV A, KAEWUNRUEN S. Impact resistance of RC columns: Experimental studies and design considerations [C]// 19th Australasian Conference on the Mechanics of Structures and Materidls. Christchurch, New Zealand: Tailor & Francis, 2007: 817–824.Google Scholar
  9. [9]
    HUGHES G, SPEIRS D M, CEMENT A. Concrete, an investigation of the beam impact problem [M]. Wexham Springs, Slough: Cement and Concrete Association, 1982.Google Scholar
  10. [10]
    WEERHEIJM J, VAN DOORMAAL J. Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34: 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.CrossRefGoogle Scholar
  11. [11]
    TACHIBANA S, MASUYA H, NAKAMURA S. Performance based design of RC beams under impact [J]. Natural Hazards and Earth System Science, 2010, 10: 1069–1078. DOI: 10.5194/nhess-10-1069-2010.CrossRefGoogle Scholar
  12. [12]
    SAATCI S, VECCHIO F J. Effects of shear mechanisms on impact behavior of RC beams [J]. ACI Structural Journal, 2009, 106: 78–86. Scholar
  13. [13]
    FUJIKAKE K, LI B, SOEUN S. Impact response of RC beam and its analytical evaluation [J]. Journal of Structural Engineering, 2009, 135: 938–950. CrossRefGoogle Scholar
  14. [14]
    ADHIKARY S D, LI B, FUJIKAKE K. Dynamic behavior of RC beams under varying rates of concentrated loading [J]. International Journal of Impact Engineering, 2012, 47: 24–38. DOI: 10.1016/j.ijimpeng.2012.02.001.CrossRefGoogle Scholar
  15. [15]
    XIAO S, CAO W, PAN H. Experiment of reinforced concrete beams at different loading rates [C]// 15th World Conference on Earthquake Engineering, 2012.Google Scholar
  16. [16]
    GOLSTON M, REMENNIKOV A, ShEIKH M N. Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading [J]. Engineering Structures, 2016, 113: 220–232. DOI: 10.1016/j.engstruct.2016.01.044.CrossRefGoogle Scholar
  17. [17]
    QASRAWI Y, HEFFERNAN P J, FAM A. Dynamic behaviour of concrete filled FRP tubes subjected to impact loading [J]. Engineering Structures, 2015, 100: 212–225. DOI: 10.1016/j.engstruct.2015.06.012.CrossRefGoogle Scholar
  18. [18]
    HALLQUIST J O. LS-DYNA keyword user’s manual: Volume II material model [M]. Livermore Software Technology Corporation (LSTC), 2014.Google Scholar
  19. [19]
    BRANNON R M, LEELAVANICHKUL S. Survey of four damage models for concrete [R]. Prod Sandia Gov, 2009: 1–80. DOI: 10.2172/993922.Google Scholar
  20. [20]
    CRAWFORD J E, WU Y, CHOI H, MAGALLANES J M, LAN S. Use and validation of the release III K&C concrete material model in LS-DYNA [M]. Glendale: Karagozian Case, 2012.Google Scholar
  21. [21]
    TU Z, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36: 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.CrossRefGoogle Scholar
  22. [22]
    WU Y, CRAWFPRD J E, MAGALLANES J M. Performance of LS-DYNA concrete constitutive models [C]// 12th International LS-DYNA Users Conference, 2012.Google Scholar
  23. [23]
    MALVAR J. Simplified concrete modeling with* Mat-Concrete-Damage-Rel3 [M]. 2005: 49–60. Scholar
  24. [24]
    HANSSON P S H. Simulation of concrete penetration in 2D and 3D with the RHT material model [M]. Swedish Defense Research Agency, 2002.Google Scholar
  25. [25]
    ZHENGUO T, YONG L. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36: 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.CrossRefGoogle Scholar
  26. [26]
    COTSOVOS D, PAVLOVIC M. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading [J]. International Journal of Impact Engineering, 2008, 35: 319–335. DOI: 10.1016/j.ijimpeng.2007.03.006.CrossRefGoogle Scholar
  27. [27]
    RIISGAARD B, NGO T, MENDIS P, GEORGAKIS C, STANG H. Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar [C]// 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007. Scholar
  28. [28]
    ABBASNIA R, MOHAJERI F, RASHIDIAN O, USEFI N. Theoretical resistance of rc frames under the column removal scenario considering high strain rates [J]. Journal of Performance of Constructed Facilities (ASCE), 2016, 30(5). DOI: 10.1061/(ASCE)CF.1943-5509.0000867.Google Scholar
  29. [29]
    ASPRONE D, FRASCADORE R, DI LUDOVICO M, PROTA A, MANFREDI G. Influence of strain rate on the seismic response of RC structures [J]. Engineering Structures, 2012, 35: 29–36. DOI: org/10.1016/j.engstruct.2011.10.025.CrossRefGoogle Scholar
  30. [30]
    CARTA G, STOCHINO F. Theoretical models to predict the flexural failure of RC beams under blast loads [J]. Engineering Structures, 2013, 49: 306–315. DOI: 10.1016/j.engstruct.2012.11.008.CrossRefGoogle Scholar
  31. [31]
    MIN F, YAO Z, JIANG T. Experimental and numerical study on tensile strength of concrete under different strain rates [J]. The Scientific World Journal, 2014, 2014(11): 173531. DOI: 10.1155/2014/173531.Google Scholar
  32. [32]
    MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. Materials Journal, 1998, 95: 735–739. Google Scholar
  33. [33]
    MALVAR L J, CRAWFORD J E. Dynamic increase factors for steel reinforcing bars [M].
  34. [34]
    CEB-FIP Code 1990: Design code [M]. Thomas Telford, 1993.Google Scholar
  35. [35]
    USEFI N, MOHAJERI F, ABBASNIA R. Finite Element analysis of RC elements in progressive collapse scenario [J]. Gradevinar, 2016, 68: 1009–1022. DOI: 10.14256/JCE.1550. 2016.Google Scholar
  36. [36]
    MOHAJERI F, USEFI N, ABBASNIA R. Analytical investigation of reinforced concrete frames under middle column removal scenario [J]. Advances in Structural Engineering, 2017. Google Scholar
  37. [37]
    ABBASNIA R, MOHAJERI NAV F, USEFI N. A new method for progressive collapse analysis of RC frames [J]. Structural Engineering and Mechanics, 2016, 60(1): 31–50. DOI: 10.12989/sem.2016.60.1.031.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Civil Engineering DepartmentIran University of Science and TechnologyTehranIran
  2. 2.Centre for Infrastructure EngineeringWestern Sydney UniversitySydneyAustralia

Personalised recommendations