Journal of Central South University

, Volume 25, Issue 5, pp 1173–1181 | Cite as

Dynamic model of saturator based on a global heat and mass transfer coefficient

  • Di Huang (黄地)
  • Deng-ji Zhou (周登极)
  • Hui-sheng Zhang (张会生)
  • Ming Su (苏明)
  • Shi-lie Weng (翁史烈)
Article
  • 2 Downloads

Abstract

Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant operation, HAT cycle has a great demand for modeling and simulation of the system and its components, especially the saturator, to provide reference for system design and optimization. The conventional saturator models are usually based on the theory of heat and mass transfer, which need two accurate coefficients to ensure convincing results. This work proposes a global heat and mass transfer coefficient based on cooling tower technology to model the saturator in small-scale HAT cycle. Compared with the experimental data, the simulation results show that the proposed model well predicts the dynamic humidity and temperature distribution characteristics of saturator at low air pressure and temperature.

Key words

saturator cooling tower technology global coefficient dynamic modeling 

一种基于通用传热传质系统的新型饱和器的动态建模方法

摘要

饱和器是湿空气透平(HAT)循环最重要的部件之一,也是HAT 循环与其他燃气轮机循环最 重要的区别。由于缺少相关商业运行的经验,热力系统建模与仿真,特别是对饱和器的建模、仿真工 作,对HAT 循环系统设计、优化有着至关重要的意义。传统饱和器模型通常是基于传热传质理论, 该理论需要精确的传热系数和传质系数来保证模型的准确性。本文提出了一种利用基于冷却塔模型的 通用传热传质系数来描述小型HAT 循环系统中饱和器的建模方法。通过与仿真结果的比较表明,该 模型可以很好地预测饱和器在低压低温条件下的内部湿度和温度的动态分布特性。

关键词

饱和器 冷却塔模型 通用系数 动态建模 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RAO A D. Process for producing power: US, US4829763 [P]. 1989–05–16.Google Scholar
  2. [2]
    NAKHAMKIN M, PELINI R, PATEL M I, WOLK R. Power augmentation of heavy duty and two-shaft small and medium capacity combustion turbines with application of humid air injection and dry air injection technologies [C]// ASME 2004 Power Conference. Baltimore, 2004: 301–306.CrossRefGoogle Scholar
  3. [3]
    FARMER R. Gas turbine world handbook [M]. Fairfield: Gas Turbine World, 2010.Google Scholar
  4. [4]
    AGREN N D, WESTERMARK M O, BARTLETT M A, LINDQUIST T. First experiments on an evaporative gas turbine pilot power plant: Water circuit chemistry and humidification evaluation [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2002, 124(1): 96–102.CrossRefGoogle Scholar
  5. [5]
    HATAMIYA S, ARAKI H, HIGUCHI S. An evaluation of advanced humid air turbine system with water recovery [C]// ASME Turbo Expo 2004: Power for Land, Sea, and Air. Vienna, 2004, 7: 585–591.Google Scholar
  6. [6]
    KUROKI H, HATAMIYA S, SHIBATA T, KOGANEZAWA T, KIZUKA N, MARUSAIMA S. Development of elemental technologies for advanced humid air turbine system [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2008, 130(3): 183–189.CrossRefGoogle Scholar
  7. [7]
    ARAKI H, IWAI Y, TAKEDA T, MORISAKI T, SATO K. Test results of 40MW-class advanced humid air turbine and exhaust gas water recovery system [C]// ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, 2014, 3A.Google Scholar
  8. [8]
    de PAEPE W, CARRERO M M, BRAM S, CONTINO F. T100 micro gas turbine converted to full humid air operation: test rig evaluation [C]// ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, 2014, 3A.Google Scholar
  9. [9]
    WANG Zi-dong, CHEN Han-ping, WENG Shi-lie. New calculation method for thermodynamic properties of humid air in humid air turbine cycle—The general model and solutions for saturated humid air [J]. Energy, 2013, 58(5): 606–616.CrossRefGoogle Scholar
  10. [10]
    WANG Bo, ZHANG Shi-jie, XIAO Yun-han, XU Zhen. A comparison of the hat (humid air turbine) cycle performance of a micro gas turbine with and without an aftercooler [J]. Journal of Engineering for Thermal Energy & Power, 2010, 25(1): 39–42. (in Chinese)Google Scholar
  11. [11]
    WANG Yu-zhang, LI Yi-xing, WENG Shi-lie, WANG Yong-hong. Numerical simulation of counter-flow spray saturator for humid air turbine cycle [J]. Energy, 2007, 32(5): 852–860.CrossRefGoogle Scholar
  12. [12]
    LIU Chun-qi, SONG Hua-fen. Lewis factor and its impact on simulation of saturator [J]. Gas Turbine Technology, 2008, 21(1): 50–53. (in Chinese)Google Scholar
  13. [13]
    CARATOZZOLO F, TRAVERSO A, MASSARDO A F. Implementation and experimental validation of a modeling tool for humid air turbine saturators [J]. Applied Thermal Engineering, 2011, 31(16): 3580–3587.CrossRefGoogle Scholar
  14. [14]
    de PAEPE W, CONTINO F, DELATTIN F, et al. New concept of spray saturation tower for micro Humid Air Turbine applications [J]. Applied Energy, 2014, 130: 723–737.CrossRefGoogle Scholar
  15. [15]
    TREYBAL R E. Mass-transfer operation[M]. Columbus: McGraw-Hill, 1968.Google Scholar
  16. [16]
    NYBERG B, THERN M. Thermodynamic studies of a HAT cycle and its components [J]. Applied Energy, 2012, 89(1): 315–321.CrossRefGoogle Scholar
  17. [17]
    PARENTE J O S, TRAVERSO A, MASSARDO A F. Saturator analysis for an evaporative gas turbine cycle [J]. Applied Thermal Engineering, 2003, 23(10): 1275–1293.CrossRefGoogle Scholar
  18. [18]
    HUANG Di, CHEN Jin-wei, ZHOU Deng-ji, ZHANG Hui-sheng, SU Ming. Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine [J]. Journal of Central South University, 2018, 25(3): 662–670.CrossRefGoogle Scholar
  19. [19]
    WEI Chen-yu, ZANG Shu-sheng. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle [J]. Applied Thermal Engineering, 2013, 51(1,2): 166–176.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Power Machinery and Engineering of Education MinistryShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Grid Jiangsu Electric Power Research InstituteNanjingChina

Personalised recommendations