Advertisement

Journal of Central South University

, Volume 25, Issue 5, pp 1144–1153 | Cite as

Assessment of internal defects of hardfacing coatings in regeneration of machine parts

  • Jerzy Jozwik
  • Krzysztof Dziedzic
  • Ireneusz Usydus
  • Dawid Ostrowski
  • Grzegorz M Krolczyk
Article
  • 27 Downloads

Abstract

This paper presents the use of computed tomography for the evaluation of hardfacing. The method used in this research is hardfacing by tungsten inert gas using alloy wires of wear resistant layers. This paper discusses the latest materials used for hardfacing and their application. It characterizes the defects of obtained hardfacing and impact of the type of wire on the concentration of defects. It further, the basic mechanical properties of coatings were determined. The results are subjected to qualitative and quantitative analysis. The smallest average percentage of defects in relation to the overall surface is observed for the hardfacing EL-600 HB, which amounts to 1.5%. The highest average percentage of defects in relation to the overall surface is observed for the hardfacing EL-500 HB, which amounts to 7.2%. The chemical composition of hardfacing has been presented.

Key words

hardfacing coating tomography welding defects 

修复零件中堆焊涂层内部缺陷的评估

摘要

本文采用计算机断层扫描技术对堆焊效果进行评估。采用钨极惰性气体保护进行堆焊,焊料为 耐磨涂层的合金线。讨论了最新的堆焊材料及其应用。对堆焊涂层的缺陷进行表征,并研究焊料线材 对缺陷浓度的影响。此外,测试了涂层的基本力学性能,对测试结果进行定性和定量分析。结果表明, EL-600 HB 堆焊涂层总表面的平均缺陷百分数最小,为1.5%。EL-600 HB 堆焊涂层总表面的平均缺陷 百分数最大,为7.2%。获得了堆焊涂层的化学成分。

关键词

堆焊 涂层 断层扫描术 焊接 缺陷 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LEHOCKA D, KLICH J, FOLDYNA J, HLOCH S, KROLCZYK J B, CARACH J, KROLCZYK G M. Copper alloys disintegration using pulsating water jet [J]. Measurement, 2016, 82: 375–383. DOI: 10.1016/j.measurement.2016.01.014.CrossRefGoogle Scholar
  2. [2]
    GLOWACZ A, GLOWACZ A, KOROHODA P. Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier [J]. Archives of Metallurgy and Materials, 2014, 59(1): 31–34. DOI: 10.2478/amm-2014-0005.CrossRefGoogle Scholar
  3. [3]
    WOJCIECHOWSKI S, MARUDA R W, KROLCZYK G M, NIESLONY P. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling [J]. Precision Engineering, 2016, 51: 582–596. DOI: 10.1016/j.precisioneng.2017.10.014.CrossRefGoogle Scholar
  4. [4]
    YANG K, YANG K, BAO Y F, JIANG Y F. Formation mechanism of titanium and niobium carbides in hardfacing alloy [J]. Rare Metals, 2017: 36(8): 640–644. DOI: 10.1007/s12598-016-0777-5.CrossRefGoogle Scholar
  5. [5]
    DA SILVA L J, D'OLIVEIRA A. NiCrSiBC coatings: Effect of dilution on microstructure and high temperature tribological behaviour [J]. Wear, 2016, 350: 130–140. DOI: 10.1016/j.wear.2016.01.015.CrossRefGoogle Scholar
  6. [6]
    CHAKRABORTY G, DAS C R, ALBERT S K, BHADURI A K, MURUGESAN S, DASGUPTA A. Effect of alloy 625 buffer layer on Hardfacing of modified 9Cr-1Mo steel using nickel base Hardfacing alloy [J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1663–1672. DOI: 10.1007/s11665-016-1965-z.CrossRefGoogle Scholar
  7. [7]
    WANG X H, ZOU Z D, QU S Y. Microstructure of Fe-based alloy hardfacing coating reinforced by TiC-VC particle [J]. Journal of Iron and Steel Research, 2006, 13(4): 51–55. DOI: 10.1016/S1006-706X(06)60078-2.CrossRefGoogle Scholar
  8. [8]
    PASHECHKO M, DZIEDZIC K, BARSZCZ M. Study of the structure and properties of wear-resistant eutectic Fe-Mn-C-B-Si-Ni-Cr coatings [J]. Powder Metallurgy and Metal Ceramics, 2013, 7–8(52): 469–476. DOI: 10.1007/s11106-013-9549-z.CrossRefGoogle Scholar
  9. [9]
    YUKSEL N, SAHIN S. Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys [J]. Materials and Design, 2016, 58: 491–498. DOI: 10.1016/j.matdes.2014.02.032.CrossRefGoogle Scholar
  10. [10]
    CORREA E O, ALCANTARA N G, VALERIANO L C, BARBEDO N D, CHAVES R R. The effect of microstructure on abrasive wear of a Fe–Cr–C–Nb hardfacing alloy deposited by the open arc welding process [J]. Surface & Coatings Technology, 2015, 276: 479–484. DOI: 10.1016/j.surf coat.2015. 06.026.CrossRefGoogle Scholar
  11. [11]
    BADISCH E, KATSICH C, WINKELMANN H, FRANEK F, MANISH R. Wear behavior of hardfaced Fe-Cr-C alloy and austenitic steel under 2-body and 3-body conditions at elevated temperature [J]. Tribology International, 2010, 43: 1234–1244. DOI: 10.1016/j.trib oint.2010.01.008.CrossRefGoogle Scholar
  12. [12]
    VALAVANIS I, KOSMOPOULOS D. Multiclass defect detection and classification in weld radiographic images using geometric and texture features [J]. Expert Systems with Applications, 2010, 37: 7606–7614. DOI: 10.1016/j.eswa.2010.04.082.CrossRefGoogle Scholar
  13. [13]
    ZAPATA J, VILAR R, RUIZ R. Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers [J]. Expert Systems with Applications, 2011, 38: 8812–8824. DOI: 10.1016/j.eswa.2011.01.092.CrossRefGoogle Scholar
  14. [14]
    TABATABAEIPOUR M, HETTLER J, DELRUE S, ABEELE K. Non-destructive ultrasonic examination of root defects in friction stir welded butt-joints [J]. NDT&E International, 2016, 80: 23–34. DOI: 10.1016/j.ndteint. 2016.02.007.CrossRefGoogle Scholar
  15. [15]
    KROLCZYK J B, GAPINSKI B, KROLCZYK G M, SAMARDZIC I, MARUDA R W, SOUCEK K, JAVADI Y, LEGUTKO S, NIESLONY P, STAS L. Topographic inspection as a method of weld joint diagnostic [J]. Tehnicki Vjesnik–Technical Gazette, 2016, 23(1): 301–306. DOI: 10.17559/TV-20141230182054.Google Scholar
  16. [16]
    DINDA S K, WARNETT J M, WILLIAMS M A, ROYA G, SRIRANGAM P. 3D imaging and quantification of porosity in electron beam welded dissimilar steel to Fe-Al alloy joints by X-ray tomography [J]. Materials and Design, 2016, 96: 224–231. DOI: 10.1016/j.matdes. 2016.02.010.CrossRefGoogle Scholar
  17. [17]
    YANG M, XIONG S M, GUO Z. Characterization of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling [J]. Acta Materialia, 2015, 92: 8–17. DOI: 10.1016/j.actamat.2015.03.044.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland
  2. 2.Electrical Engineering and Computer Science FacultyLublin University of TechnologyLublinPoland
  3. 3.Institute of Technical Sciences and AviationState School of Higher EducationChelmPoland
  4. 4.Faculty of Mechanical EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations