Skip to main content
Log in

An improved brain emotional learning algorithm for accurate and efficient data analysis

基于改进大脑情感学习算法的有效数据分类

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications.

摘要

提出了采用遗传算法优化大脑情感学习模型的方法。大脑情感学习(BEL)模型是一种计算模型, 由Morén 等人于2000 年根据神经生理学上的发现提出。该模型根据大脑中杏仁体和眶额皮质之间的 情感学习机制建立,不完全地模拟了情感刺激在大脑反射通路中的信息处理过程。大脑情感学习模型 具有结构简单、计算复杂度低、运算速度快的特点。为了进一步提高模型的精度,采用遗传算法优化 调整大脑情感学习模型的权值,构造具有强泛化能力的大脑情感学习数据分析模型,并用于数据预测 与数据分类两方面。在数据预测方面,采用典型的磁暴环电流指数Dst 时间序列作为测试数据。实验 结果表明,从均方差MSE 和线性相关性R 指标来看,GA-BEL 算法的误差小、相关度高,说明该算法用 于预测的有效性。在分类方面,采用8 个典型的UCI 数据集和一个典型的头部磁共振图像数据集(fMRI) 作为测试数据。分类实验结果表明,GA-BEL 算法的分类正确率高,运算速度快于传统算法,说明该算 法用于分类的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LARROZA A, MORATAL D, PAREDES-SÁNCHEZ A. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI [J]. Journal of Magnetic Resonance Imaging, 2015, 42(5): 1362–1368.

    Article  Google Scholar 

  2. YAMASHITA Y, WAKAHARA T. Affine-transformation and 2D-projection invariant k-NN classification of handwritten characters via a new matching measure [J]. Pattern Recognition, 2016, 52(C): 459–470.

    Article  Google Scholar 

  3. SHI Tian, KONG Jian-yi, WANG Xing-dong, LIU Zhao, ZHENG Guo. Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy [J]. Journal of Central South University, 2016, 23(11): 2867–2875.

    Article  Google Scholar 

  4. KHOOBAN M H, JAVIDAN R. A novel control strategy for DVR: Optimal bi-objective structure emotional learning [J]. International Journal of Electrical Power & Energy Systems, 2016, 83: 259–269.

    Article  Google Scholar 

  5. SHARMA M K, KUMAR A. Performance comparison of brain emotional learning-based intelligent controller (BELBIC) and PI controller for continually stirred tank heater (CSTH) [J]. Lecture Notes in Electrical Engineering, 2015, 335: 293–301.

    Article  Google Scholar 

  6. MORÉN J, BALKENIUS C. A computational model of emotional learning in the Amygdala [C]// Proceedings of the 6th International Conference on the Simulation of Adaptive Behaviour. MIT Press, 2000: 115–124.

    Google Scholar 

  7. LEDOUX J E. Emotion circuits in the brain [J]. Annual Review of Neuroscience, 2000, 23: 155–184.

    Article  Google Scholar 

  8. SHARAFI Y, SETAYESHI S, FALAHIAZAR A. An improved model of brain emotional learning algorithm based on interval knowledge [J]. Journal of Mathematics and Computer Science, 2015, 14: 42–53.

    Article  Google Scholar 

  9. LOTFI E. Wind power forecasting using emotional neural networks [C]// Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. San Diego, USA: MIT Press, 2014: 311–316.

    Google Scholar 

  10. SHARBAFI M A, LUCAS C, DANESHVAR R. Motion control of omni-directional three-wheel robots by brainemotional-learning-based intelligent controller [J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2010, 40(6): 630–638.

    Article  Google Scholar 

  11. LUCAS C, DANIAL S, NIMA S. Introducing Belbic: Brain emotional learning based intelligent controller [J]. Intelligent Automation & Soft Computing, 2004, 10(1): 11–21.

    Article  Google Scholar 

  12. ABDI J, MOSHIRI B, ABDULHAI B, SEDIGH A K. Forecasting of short-term traffic-flow based on improved neuro-fuzzy models via emotional temporal difference learning algorithm [J]. Engineering Applications of Artificial Intelligence, 2012, 25(5): 1022–1042.

    Article  Google Scholar 

  13. CHEN Jian-ping, WANG Jian-bin, YANG Yi-min. Velocity compensation control for a four-wheel drive robot based on brain emotional learning [J]. CAAI Transactions on Intelligent Systems, 2013, 8(4): 361–366.

    Google Scholar 

  14. LOTFI E, AKBARZADEH T M R. Brain emotional learning-based pattern recognizer [J]. Cybernetics & Systems, 2013, 44(5): 402–421.

    Article  Google Scholar 

  15. CUI Lai-zhong, LI Geng-hui, LIN Qiu-zhen, DU Zhi-hua, GAO Wei-feng, CHEN Jian-yong, LU Nan. A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation [J]. Information Science, 2016 (367, 368): 1012–1044.

    Article  Google Scholar 

  16. CUI Lai-zhong, LI Geng-hui, LIN Qiu-zhen, CHEN Jian-yong, LU Nan. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations [J]. Computers & Operations Research, 2016, 67: 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  17. HOLLAND J H. Adaptation in Natural and Artificial Systems [M]. Cambridge, UK: MIT Press, 1992.

    Google Scholar 

  18. DAS S, ABRAHAM A, KONAR A. Automatic clustering using an improved differential evolution algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(1): 218–237.

    Article  Google Scholar 

  19. COOK D F, RAGSDALE C T, MAJOR R L. Combining a neural network with a genetic algorithm for process parameter optimization [J]. Engineering Applications of Artificial Intelligence, 2000, 13(4): 391–396.

    Article  Google Scholar 

  20. SHEN Z Q, KONG F S. Optimizing weights by genetic algorithm for neural network ensemble [J]. Lecture Notes in Computer Science, 2004, 3173: 323–331.

    Article  Google Scholar 

  21. WU Jian-shen, LONG Jin, LIU Ming-zhe. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm [J]. Neurocomputing, 2015, 148(2): 136–142.

    Article  Google Scholar 

  22. HOSSEINI Z, NAKHAE I M. Estimation of groundwater level using a hybrid genetic algorithm-neural network [J]. Pollution, 2015, 1(1): 9–21.

    Google Scholar 

  23. LEDOUX J E. Emotion and the limbic system concept [J]. Concepts in Neuroscience, 1991, 2: 169–199.

    Google Scholar 

  24. SRINIVAS M, PATTANAIK L M. Genetic algorithms: A survey [J]. Computer, 1994, 27(6): 17–27

    Article  Google Scholar 

  25. LOTFI E, AKBARZADEH-T M R. Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices [J]. Neurocomputing, 2014, 126(3): 188–196.

    Article  Google Scholar 

  26. HAGAN M T, DEMUTH H B, BEALE M. Neural network design [M]. Beijing: China Machine Press, 2002: 357.

    Google Scholar 

  27. UCI machine learning repository [EB/OL]. [2017–03–02]. http://archive.ics.uci.edu/ml.

  28. ADHD-200 database. [2017–03–02]. http://fcon_1000.projects.nitrc.org/indi/adhd200/.

  29. SPM toolbox [2017–03–02]. http://www.fil.ion.ucl.ac.uk/spm/.

  30. TAN Ying, ZHANG Tao, TAN Rui, SHEN Xiao-tao, XIAO Jing-zhong. Classification based Wavelet Translate and SVM in the ADHD [J]. Journal of University of Electronic Science and Technology of China, 2015, 44(5): 789–794.

    Google Scholar 

  31. ZUO Wan-li, WANG Zhi-yan, LIU Tong, CHEN Hui-ting. Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach [J]. Biomedical Signal Processing & Control, 2013, 8(4): 364–373.

    Article  Google Scholar 

  32. LIBSVM: A library for support vector machines [EB/OL]. [2017–03-05]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

  33. ZHANG Zhao, ZHAO Ming-bo. Binary-and multi-class group sparse canonical correlation analysis for feature extraction and classification [J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(10): 2192–2205.

    Article  MathSciNet  Google Scholar 

  34. LUO Xiong, CHANG Xiao-hui, BAN Xiao-juan. Regression and classification using extreme learning machine based on L1-norm and L2-norm [J]. Neurocomputing, 2016, 174: 179–186.

    Article  Google Scholar 

  35. HUANG Guang-bin, ZHOU Hong-ming, DING Xiao-jian, ZHANG Rui. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems Man & Cybernetics: Part B, Cybernetics, 2012, 42(2): 513–529.

    Article  Google Scholar 

  36. BAI Zuo, HUANG Guang-Bin, WANG Dan-wei. Sparse extreme learning machine for classification [J]. IEEE Transactions on Cybernetics, 2014, 44(10): 1858–1870.

    Article  Google Scholar 

  37. RIAZ A, ALONSO E, SLABAUGH G. Phenotypic integrated framework for classification of ADHD using fMRI [C]// Proceedings of the 13th International Conference Image Analysis and Recognition. Springer International Publishing, 2016: 217–225.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-zheng Tan  (谭冠政).

Additional information

Foundation item: Project(61403422) supported by the National Natural Science Foundation of China; Project(17C1084) supported by Hunan Education Department Science Foundation of China; Project(17ZD02) supported by Hunan University of Arts and Science, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Tan, Gz. An improved brain emotional learning algorithm for accurate and efficient data analysis. J. Cent. South Univ. 25, 1084–1098 (2018). https://doi.org/10.1007/s11771-018-3808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3808-6

Key words

关键词

Navigation