Journal of Central South University

, Volume 25, Issue 5, pp 1063–1075 | Cite as

Discrimination of Acori Tatarinowii Rhizoma from two habitats based on GC-MS fingerprinting and LASSO-PLS-DA

  • Sha-sha Ma (马莎莎)
  • Bing-yang Zhang (张冰洋)
  • Lian Chen (陈练)
  • Xiao-juan Zhang (章晓娟)
  • Da-bing Ren (任达兵)
  • Lun-zhao Yi (易伦朝)
Article
  • 3 Downloads

Abstract

This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) was applied to establishing the quantitative chemical fingerprints of ATRs. A total of 104 volatile compounds were identified and quantified with the information of mass spectra and retention index (RI). Furthermore, least absolute shrinkage and selection operator (LASSO), a sparse regularization method, combined with subsampling was employed to improve the classification ability of partial least squares-discriminant analysis (PLS-DA). After variable selection by LASSO, three chemical markers, β-elemene, α-selinene and α-asarone, were identified for the discrimination of ATRs from two habitats, and the total classification correct rate was increased from 82.76% to 96.55%. The proposed LASSO-PLS-DA method can serve as an efficient strategy for screening marked chemical components and geo-herbalism research of traditional Chinese medicines.

Key words

Acori Tatarinowii Rhizoma gas chromatography-mass spectrometry least absolute shrinkage and selection operator (LASSO) partial least squares-discriminant analysis 

基于GC-MS 指纹图谱和LASSO-PLS-DA 区分2 个不同产地的石菖蒲

摘要

本文旨在研究中国四川和安徽2 个产地石菖蒲样品的化学差异。首先通过气相色谱-质谱联用 (GC-MS)技术建立石菖蒲的定量化学指纹图谱,基于色谱、质谱信息和保留指数定性和定量了石菖 蒲中104 种挥发性化合物。在此基础上,采用一种稀疏正则化方法来提高偏最小二乘-判别分析 (PLS-DA)模型的分类能力,使得分类精度从82.76%上升到96.55%。最后,结合最小绝对收缩与选 择算子(LASSO)与二次采样筛选出区别于2 个产地的3 个化学标记物:β-榄香烯,α-芹菜素和α-细 辛醚。本文采用的最小绝对收缩与选择算子-偏最小二乘-判别分析(LASSO-PLS-DA)算法可以作为 筛选中草药中标志性化学成分和进行地理草药学研究的有效方法。

关键词

石菖蒲 气相色谱质谱联用 最小绝对收缩与选择算子 偏最小二乘-判别分析 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    FENG Xiao-lin, YU Yang, QIN Da-peng, GAO Hao, YAO Xin-sheng. Acorus linnaeus: A review of traditional uses, phytochemistry and neuropharmacology [J]. RSC Advances, 2014, 5(7): 5173–5182.CrossRefGoogle Scholar
  2. [2]
    NANDAKUMAR S, MENON S, SHAILAJAN S. A rapid HPLC-ESI-MS/MS method for determination of β-asarone, a potential anti-epileptic agent, in plasma after oral administration of acorus calamus extract to rats [J]. Biomedical Chromatography, 2013, 27(3): 318–326.Google Scholar
  3. [3]
    FENG Xiao-lin, YU Yang, GAO Hao, MU Zhen-qiang, CHENG Xiao-rui, ZHOU Wen-xia. ChemInform abstract: New sesquiterpenoids from the rhizomes of Acorus tatarinowii [J]. Cheminform, 2014, 4(79): 42071–42077.Google Scholar
  4. [4]
    ZANOLI P, AVALLONE R, BARALDI M. Sedative and hypothermic effects induced by β-asarone, a main component of Acorus calamus (pages S114–S116) [J]. Phytotherapy Research, 1998, 12(S1): S114–S116.CrossRefGoogle Scholar
  5. [5]
    MUTHURAMAN A, SINGH N, JAGGI A. Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: An evidence of anti-inflammatory and anti-oxidative activity [J]. Food & Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 2011, 49(10): 2557–2563.CrossRefGoogle Scholar
  6. [6]
    WEI Gang, CHEN Yun-bo, CHEN Dong-feng, LAI Xiao-ping, LIU Dong-hui, DENG Ru-dong. Beta-asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AbetaPP/PS1 mice [J]. Journal of Alzheimers Disease Jad, 2013, 33(3): 863–880.Google Scholar
  7. [7]
    LIU Lin-na, WANG Jing-jie, SHI Lei, ZHANG Wen-juan, DU Xiao-yan, WANG Zhi-peng. β-asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression [J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2013, 20(6): 512–520.CrossRefGoogle Scholar
  8. [8]
    WEI Gang, CHEN Yun-bo, CHEN Dong-feng, LAI Xiaoping, LIU Dong-hui, DENG Ru-dong. β-asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AβPP/PS1 mice [J]. Journal of Alzheimers Disease Jad, 2013, 33(3): 863–880.Google Scholar
  9. [9]
    YANG Yuan-xiao, CHEN Yi-tao, ZHOU Xiao-jie, HONG Chun-lan, LI Chang-yu, GUO Jian-you. Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats [J]. BMC Complementary & Alternative Medicine, 2013, 13(1): 1–6.CrossRefGoogle Scholar
  10. [10]
    ZHU Ting-zhun, XU Ying-hui, DONG Bin, ZHANG Jia-ning, WEI Zhen-qing, XU You-song. β-elemene inhibits proliferation of human glioblastoma cells through the activation of glia maturation factor β and induces sensitization to cisplatin [J]. Oncology Reports, 2011, 26(2): 405–413.Google Scholar
  11. [11]
    LIU Wen-bin, ZHANG Bing-yang, XIN Zhong-quan, REN Da-bign, YI Lun-zhao. GC-MS fingerprinting combined with chemometric methods reveals key bioactive components in Acori Tatarinowii Rhizoma [J]. International Journal of Molecular Science, 2017, 18(7): 1342.CrossRefGoogle Scholar
  12. [12]
    MARRIOTT P, SHELLIE R, CORNWELL C. Gas chromatographic technologies for the analysis of essential oils [J]. Journal of Chromatography A, 2001, 936(1, 2): 1–22.CrossRefGoogle Scholar
  13. [13]
    ZHANG Xiao-jun, YI Lun-zhao, DENG Bai-chuan, CHEN Lian, SHI Shu-ting, ZHUANG Yong-liang, ZHANG Yi. Discrimination of Acori Tatarinowii Rhizoma and Acori Calami Rhizoma based on quantitative gas chromatographic fingerprints and chemometric methods [J]. Journal of Separatim Science, 2015, 38(23): 4078–4085.CrossRefGoogle Scholar
  14. [14]
    YI Lun-zhao, DONG Nai-ping, YUN Yong-huan, DENG Bai-chuan, REN Da-bing, LIU Shao. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review [J]. Analytica Chimica Acta, 2016, 914: 17–34.CrossRefGoogle Scholar
  15. [15]
    SAMPATH A, GOMATHI N. Decision tree and deep learning based probabilistic model for character recognition [J]. Journal of Central South University, 2017, 24(12): 2862–2876.CrossRefGoogle Scholar
  16. [16]
    JONG S. SIMPLS: An alternative approach to partial least squares regression [J]. Chemometrics & Intelligent Laboratory Systems, 1993, 18(3): 251–263.MathSciNetCrossRefGoogle Scholar
  17. [17]
    WOLD S, SJSTRM M, ERIKSSON L. PLS-regression: A basic tool of chemometrics [J]. Chemometrics & Intelligent Laboratory Systems, 2001, 58(2): 109–130.CrossRefGoogle Scholar
  18. [18]
    FISHER R. The use of multiple measurements in taxonomic problems [J]. Annals of Human Genetics, 1936, 7(2): 179–188.Google Scholar
  19. [19]
    XIN Zhong-quan, ZHANG Xiao-juan, REN Da-bing, YI Zhi-biao, YI Lun-zhao. Chromatographic fingerprints combined with chemometric methods reveal the chemical features of Authentic Radix Polygalae [J]. Journal of Aoac International, 2017, 100(1): 30–37.CrossRefGoogle Scholar
  20. [20]
    FU Guang-hui, ZHANG Bing-yang, KOU He-dan, YI Lun-zhao. Stable biomarker screening and classification by subsampling-based sparse regularization coupled with support vector machines in metabolomics [J]. Chemometrics and Intelligent Laboratory Systems, 2017, 160: 22–31.CrossRefGoogle Scholar
  21. [21]
    WEHRENS R, FRANCESCHI P, VRHOVSEK U, MATTIVI F. Stability-based biomarker selection [J]. Analytica Chimica Acta, 2011, 705(1, 2): 15–23.CrossRefGoogle Scholar
  22. [22]
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO [J]. Journal of the Royal Statistical Society, 1996, 58(1): 267–288.MathSciNetMATHGoogle Scholar
  23. [23]
    WESTERHUIS J A, HOEFSLOOT H C J, SMIT S, VIS D J, SMILDE A K, van VELZIN E J J, van DUIJNHOVEN J P M, van DORSTEN F A. Assessment of PLSDA cross validation [J]. Metabolomics, 2008, 4(1): 81–89.CrossRefGoogle Scholar
  24. [24]
    COMMITTEE C P. Chinese pharmacopoeia [M]. Beijing: China Medical Science Press, 2015. (in Chinese)Google Scholar
  25. [25]
    KOV T S E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone [J]. Helvetica Chimica Acta, 2004, 41(7): 1915–1932.Google Scholar
  26. [26]
    BABUSHOK V, LINSTROM P, ZENKEVICH I. Retention indices for frequently reported compounds of plant essential oils [J]. Journal of Physical and Chemical Reference Data, 2011, 40(4): 43101–43147.CrossRefGoogle Scholar
  27. [27]
    KARIOTI A, HADJIPAVLOULITINA D, MENSAH M, FLEISCHER T C, SKALTSA H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich. (Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana [J]. Journal of Agricultural & Food Chemistry, 2004, 52(26): 8094–8098.Google Scholar
  28. [28]
    STASHENKO E, MARTHA C, YAJAIRA C, HERN N, REN M. HRGC/FID and HRGC/MSD analysis of the secondary metabolites obtained by different extraction methods from Lepechinia schiedeana, and in vitro evaluation of its antioxidant activity [J]. Journal of High Resolution Chromatography, 1999, 22(6): 343–349.CrossRefGoogle Scholar
  29. [29]
    OGUNWANDE I, FLAMINI G, CIONI P, OMIKOREDE O, AZEEZ R, AYODELE A. Aromatic plants growing in Nigeria: Essential oil constituents of Cassia alata (Linn.) Roxb. and Helianthus annuus L [J]. Records of Natural Products, 2010, 4(4): 211–217.Google Scholar
  30. [30]
    SULEIMENOV Y, ATAZHANOVA G, OZEK T, DEMIRCI B, KULYJASOV A, ADEKENOV S. Essential oil composition of three species of Achillea from kazakhstan [J]. Chemistry of Natural Compounds, 2001, 37(5): 447–450.CrossRefGoogle Scholar
  31. [31]
    SCRIVANTI LIDIA R, ANTON ANA M, ZYGADLO J. Essential oil composition of Bothriochloa Kuntze (Poaceae) from South America and their chemotaxonomy [J]. Biochemical Systematics & Ecology, 2009, 37(3): 206–213.CrossRefGoogle Scholar
  32. [32]
    ELIAS V, SIMONEIT B, CARDOSO J. Analysis of volatile sesquiterpenoids in environmental and geological samples [J]. Journal of High Resolution Chromatography, 1997, 20(6): 305–309.CrossRefGoogle Scholar
  33. [33]
    KOCSIS N, AMTMANN M, MEDNY N, KOR N. GC-MS Investigation of the aroma compounds of Hungarian red paprika (Capsicum annuum ) cultivars [J]. Journal of Food Composition & Analysis, 2002, 15(2): 195–203.CrossRefGoogle Scholar
  34. [34]
    ACREE T, ARN H. Flavornet: A database of aroma compounds based on odor potency in natural products [J]. Developments in Food Science, 1998, 40(98): 27.Google Scholar
  35. [35]
    BASER K, DEMIRCI B, ÖZEK T, AKALIN E, ÖZHATAY N. Micro-distilled volatile compounds from ferulago species growing in western turkey [J]. Pharmaceutical Biology, 2002: 466–471.Google Scholar
  36. [36]
    TRESSL R, FRIESE L, FENDESACK F, KOEPPLER H. Studies of the volatile composition of hops during storage [J]. Journal of Agricultural & Food Chemistry, 2002, 26(6): 1426–1430.CrossRefGoogle Scholar
  37. [37]
    SAGRERO-NIEVES L, BARTLEY J. Volatile components from the leaves of heterotheca inuloides cass [J]. Flavour & Fragrance Journal, 1996, 11(1): 49–51.CrossRefGoogle Scholar
  38. [38]
    ONG P, ACREE T, LAVIN E. Characterization of volatiles in Rambutan Fruit (Nephelium lappaceum L.) [J]. Journal of Agricultural & Food Chemistry, 1998, 46(2): 611–615.CrossRefGoogle Scholar
  39. [39]
    COUNET C, CALLEMIEN D, OUWERX C, COLLIN S. Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching [J]. Journal of Agricultural & Food Chemistry, 2002, 50(8): 2385–2391.Google Scholar
  40. [40]
    CHOI H. Volatile constituents of satsuma mandarins growing in Korea [J]. Flavour & Fragrance Journal, 2004, 19(5): 406–412.CrossRefGoogle Scholar
  41. [41]
    HOGNADOTTIR A, ROUSEFF R. Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatographymass spectrometry [J]. Journal of Chromatography A, 2003, 998(1, 2): 201–211.CrossRefGoogle Scholar
  42. [42]
    LE Q J, LATRASSE A. Composition of the essential oils of blackcurrant buds (Ribes nigrum L.) [J]. Journal of Agricultural & Food Chemistry, 1990, 38(1): 3–10.CrossRefGoogle Scholar
  43. [43]
    SHAFAGHAT A, SADEGHI H, OJI K. Composition and antibacterial activity of essential oils from leaf, stem and root of Chrysanthemum parthenium (L.) Bernh. from Iran [J]. Natural Product Communications, 2009, 4(6): 859–860.Google Scholar
  44. [44]
    KILANI S, LEDAUPHIN J, BOUHLEL L, SGHAIER B, SGHAIER B, BOUBAKER J. Comparative study of cyperus rotundus essential oil by a modified GC/MS analysis method. evaluation of its antioxidant, cytotoxic, and apoptotic effects [J]. Chemistry & Biodiversity, 2008, 5(5): 729–742.Google Scholar
  45. [45]
    LAM K, CHEN J, LAM C, WU Q, YAO P, DONG T. Asarone from Acori Tatarinowii Rhizoma Potentiates the nerve growth factor-induced neuronal differentiation in cultured PC12 cells: A signaling mediated by protein kinase A [J]. Plos One, 2016, 11(9). DOI: 10.1371/journal.pone. 0163337.Google Scholar
  46. [46]
    QIU Guo-zhen, CHEN Sheng-qiang, GUO Jia-ling, WU Jie, YI Yong-hong. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice [J]. Behavioural Brain Research, 2016, 312: 212–218.CrossRefGoogle Scholar
  47. [47]
    WANG G V, LI X, HUANG F, ZHAO J, DING H, CUNNINGHAM C. Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death [J]. Cellular & Molecular Life Sciences Cmls, 2005, 62(7, 8): 881–893.CrossRefGoogle Scholar
  48. [48]
    LI X, WANG G, ZHAO J, DING H, CUNNINGHAM C, CHEN F. Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase [J]. Cellular & Molecular Life Sciences Cmls, 2005, 62(7, 8): 894–904.CrossRefGoogle Scholar
  49. [49]
    YAO Yi-qun, DING Xia, JIA Yi-chang, HUANG Chuan-xin, WANG Yi-zheng, XU Ying-hui. Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation [J]. Cancer Letters, 2008, 264(1): 127–134.CrossRefGoogle Scholar
  50. [50]
    SINGH A, CHANOTIYA C, YADAV A, KALRA A. Volatiles of callicarpa macrophylla: A rich source of selinene isomers [J]. Natural Product Communications, 2010, 5(5): 269–272.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yunnan Food Safety Research InstituteKunming University of Science and TechnologyKunmingChina
  2. 2.School of ScienceKunming University of Science and TechnologyKunmingChina
  3. 3.Key Laboratory of Cultivation and Protection for Non-wood Forest TreesCentral South University of Forestry and TechnologyChangshaChina
  4. 4.Hunan Entry-Exit Inspection and Quarantine BureauChangshaChina
  5. 5.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations