Journal of Central South University

, Volume 25, Issue 5, pp 1003–1012 | Cite as

Analyses on uniformity of particles under HPGR finished grinding system

  • Peng-yun Xu (许鹏云)
  • Cong Hu (胡聪)
  • Min Gan (甘敏)
  • Jing Li (李晶)
  • Xu Pan (潘旭)
  • Hong-qi Ye (叶红齐)


In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1–1.2 and the optimal average particle size for flotation is 50–55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.

Key words

high-pressure grinding rolls particle uniformity uniformity coefficient average particle size flotation shielding effect compact effect 



针对高压辊磨终粉磨工艺中存在的过磨和粒度不均匀现象,本文采用高压辊磨终粉磨、阳离子 反浮选以及准静态料层粉碎模拟等试验方法从评价指标、工艺条件参数的影响、颗粒均匀性对浮选的 影响及颗粒均匀性强化机制等方面展开研究。理论分析表明,对颗粒均匀性分析的评价指标必须涵盖 均匀性系数和平均粒径两个方面;试验结果表明,高压辊磨终粉磨工艺中选粉机循环风机转速对颗粒 均匀性影响最为明显,其次是高压辊磨机工作压力和辊缝,辊面转速的影响最弱;颗粒平均粒径对方 解石浮选精矿品位有较大影响而均匀性系数对精矿回收率有较大影响,综合考虑浮选精矿回收率和品 位,终粉磨制备颗粒的平均粒径最佳值为50~55 μm、均匀性系数为1.1~1.2;为了提高产品颗粒均匀 性,高压辊磨终粉磨工艺中有利于料层屏蔽效应和密实效应的操作参数应该得到强化。


高压辊磨 终粉磨 颗粒均匀性 均匀性系数 平均粒径 屏蔽效应 密实效应 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MUTZE T. Energy dissipation in particle bed comminution [J]. International Journal of Mineral Processing, 2015, 136: 15–19. DOI: 10.1016/j.minpro.2014.10.004.CrossRefGoogle Scholar
  2. [2]
    KHANAL M, SCHUBERT W, TOMAS J. Discrete element method simulation of bed comminution [J]. Minerals Engineering, 2007, 20(2): 179–187. DOI: 10.1016/j.mineng. 2006.08.011.CrossRefGoogle Scholar
  3. [3]
    TAVARES L M. Particle weakening in high-pressure roll grinding [J]. Minerals Engineering, 2005, 18(7): 651–657. DOI: 10.1016/j.mineng.2004.10.012.CrossRefGoogle Scholar
  4. [4]
    SESEMANN Y, BROECKMANN C, HOFTER A. A new laboratory test for the estimation of wear in high pressure grinding rolls [J]. Wear, 2013, 302(1,2): 1088–1097. DOI: 10.1016/j.wear.2012.10.022.CrossRefGoogle Scholar
  5. [5]
    GAO H, QU L G. 3D design and analysis of the crushing roller of a high-pressure grinding roller [J]. Journal of Materials Processing Technology, 2002, 129(1–3): 649–652. DOI: 10.1016/j.wear.2012.10.022.CrossRefGoogle Scholar
  6. [6]
    ZENG Yi-cong, XU Hai-liang, CHEN Qi, WU Bo. Research on influence of high pressure grinding rollers’ hydraulic system parameters on roll cap deviations [J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5): 841–848. (in Chinese)Google Scholar
  7. [7]
    DUNDAR H, BENZER H, AYDOGAN N A. Application of population balance model to HPGR crushing [J]. Minerals Engineering, 2013, 50–51: 114–120. DOI: 10.1016/j.mineng. 2013.07.005.CrossRefGoogle Scholar
  8. [8]
    SARAMAK D. Mathematical models of particle size distribution in simulation analysis of high-pressure grinding roll operations [J]. Physicochemical Problems of Mineral Processing, 2013, 49(1): 121–131. DOI: 10.5277/ppmp130112.Google Scholar
  9. [9]
    XU Peng-yun, LI Jing, LUO Heng, YE Hong-qi. Models for the particle size distribution of high-pressure grinding rolls based on fractal theory [J]. Journal of China University of Mining & Technology, 2016, 45(5): 1030–1037. (in Chinese)Google Scholar
  10. [10]
    AYDOGAN N A, ERGUN L, BENZER H. High pressure grinding rolls (HPGR) applications in the cement industry [J]. Minerals Engineering, 2006, 19(2): 130–139. DOI: 10.1016/j.mineng.2005.08.011.CrossRefGoogle Scholar
  11. [11]
    CAMALAN M, ONAL M A R. Influence of high-pressure grinding rolls on physical properties and impact breakage behavior of coarsely sized cement clinker [J]. Particulate Science and Technology, 2016, 34(3): 278–288. DOI: 10.1080/02726351.2015. 1075636.CrossRefGoogle Scholar
  12. [12]
    ZHU De-qing, YU Wei, ZHOU Xian-lin, PAN Jian. Strengthening pelletization of manganese ore fines containing high combined water by high pressure roll grinding and optimized temperature elevation system [J]. Journal of Central South University, 2014, 21(9): 3485–3491. DOI: 10.1007/s11771-014-2326-4.CrossRefGoogle Scholar
  13. [13]
    KODALI P, DHAWAN N, DEPCI T, LIN C L, MILLER J D. Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching [J]. Minerals Engineering, 2011, 24(13): 1478–1487. DOI: 10.1016/j.mineng.2011.07.010.CrossRefGoogle Scholar
  14. [14]
    JANKOVIC A, SUTHER S, WILLS T, VALERY W. Evaluation of dry grinding using HPGR in closed circuit with an air classifier [J]. Minerals Engineering, 2015, 71: 133–138. DOI: 10.1016/j.mineng.2014.10.023.CrossRefGoogle Scholar
  15. [15]
    YUAN Zhi-tao, LI Li-xia, HAN Yue-xin, LIU Lei, LIU Ting. Fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll [J]. Journal of Central South University, 2017, 23(11): 2838–2844. DOI: 10.1007/s11771-016-3347-y.CrossRefGoogle Scholar
  16. [16]
    ALTUN O, BENZER H, DUNDAR H, AYDOGAN N A. Comparison of open and closed circuit HPGR application on dry grinding circuit performance [J]. Minerals Engineering, 2011, 24: 267–275. DOI: 10.1016/j.mineng.2010.08.024.CrossRefGoogle Scholar
  17. [17]
    LAN Jian-wen, JIN Wei-xing, WANG Jun. Performance studies of finished mill with roller press in cement production process [J]. Journal of Xi’an University of Architecture & Technology: Natural Science Edition, 2012, 44(4): 597–604. (in Chinese)Google Scholar
  18. [18]
    YIN Wan-zhong, WANG Ji-zhen. Effects of particle size and particle interactions on scheelite flotation [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11): 3682–3687. DOI: 10.1016/S1003-6326(14)63515-9.CrossRefGoogle Scholar
  19. [19]
    RAHMAN A, AHMAD K D, MAHMOUD A. Nanomicrobubble flotation of fine and ultrafine chalcopyrite particles [J]. International Journal of Mining Science and Technology, 2014, 24(4): 559–566.CrossRefGoogle Scholar
  20. [20]
    XIE Guang-yuan, WU Ling, OU Ze-shen, ZHANG Xiu-peng, WANG Wu-ping. Research on fine coal classified flotation flow sheet [J]. Journal of China University of Mining & Technology, 2005, 34(6): 756–760. (in Chinese)Google Scholar
  21. [21]
    THELLA J S, MUKHERJEE A K, SRIKAKULAPU N G. Processing of high alumina iron ore slimes using classification and flotation [J]. Powder Technology, 2012, 217: 418–426. DOI: 10.1016/j.powtec.2011.10.058.CrossRefGoogle Scholar
  22. [22]
    YANG, Xiu-li, AI Guang-hua. Effects of surface electrical property and solution chemistry on fine wolframite flotation [J]. Separation and Purification Technology, 2016, 170: 272–279. DOI: 10.1016/j.seppur.2016.06.055.CrossRefGoogle Scholar
  23. [23]
    ERGULER Z A. A quantitative method of describing grain size distribution of soils and some examples for its applications [J]. Bulletin of Engineer Geology and the Environment, 2016, 75(2): 807–819. DOI: 10.1007/s10064-015-0790-1.CrossRefGoogle Scholar
  24. [24]
    HOU Ying, YIN Wan-zhong, ZHU Ju-jian, YAO Jin, WANG Yu-lian, WU Kai. Relationship between parameters of size characteristic and uniformity of particle size distribution [J]. Journal of Central South University: Science and Technology, 2015, 46(9): 3183–3187. (in Chinese)Google Scholar
  25. [25]
    MATIJAŠIC G, KURAJICA S. Grinding kinetics of amorphous powder obtained by sol-gel process [J]. Powder Technology, 2010, 197(3): 165–169. DOI: 10.1016/j.powtec. 2009.09.010.CrossRefGoogle Scholar
  26. [26]
    LIU Shu-hua, LI Qiao-ling, XIE Guo-shuai, LI Li-hua, XIAO Heng-lin. Effect of grinding time on the particle characteristics of glass powder [J]. Powder Technology, 2016, 295(3): 133–141. DOI: 10.1016/j.powtec.2016.03.030.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Northwest Mining and Geology Group Co.Ltd for Nonferrous MetalsXi’anChina
  3. 3.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  4. 4.Basic Teaching DepartmentNanchang Institute of Science and TechnologyNanchangChina
  5. 5.Hefei Cement Research and Design InstituteHefeiChina

Personalised recommendations