Skip to main content
Log in

Prediction of soil–water characteristic curve for Malan loess in Loess Plateau of China

基于物理特征的马兰黄土土–水特征曲线的预测方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To predict the soil–water characteristic curve (i.e. SWCC) of natural and remoulded Malan loess from soil physical properties, one-point methods for determining the SWCC that are much simpler than experimental methods are proposed. The predicted SWCC is presented in the form of the BRUTSAERT equation, in which the four model parameters can be estimated from soil physical properties using the best correlations obtained in the present study along with one measured data point. The proposed one-point methods are validated using the measured SWCC data reported in the literature. The results of validation studies suggest that the proposed one-point methods can provide reasonable prediction of the SWCC for natural and remoulded Malan loess. The measured data point should be within the transition zone; the measured suction is suggested between 25 to 100 kPa for natural loess, while between 100 to 500 kPa for remoulded loess.

摘要

总结了已有的预测土–水特征曲线的方法; 评价了已有的黄土土–水特征曲线的研究; 提出并验证了基于物理特征预测原状及重塑马兰黄土脱湿土–水特征曲线的一点法; 比较了原状和重塑马兰黄土的土–水特征曲线。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LIU Dong-sheng, ZHANG Zong-hu. Chinese loess [J]. Acta Geologica Sinica, 1962, 42(1): 1–18. (in Chinese)

    Google Scholar 

  2. DIJKSTRA T A, ROGERS C D F, SMALLEY I J, DERBYSHIRE E, LI Y, MENG X M. The loess of north-central China: Geotechnical properties and their relation to slope stability [J]. Engineering Geology, 1994, 36(3): 153–171.

    Article  Google Scholar 

  3. LI P, VANAPALLI S K, LI T L. Review of collapse triggering mechanism of collapsible soils due to wetting [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 256–274.

    Article  Google Scholar 

  4. MITCHELL J K, SOGA K. Fundamentals of soil behavior [M]. New York: John Wiley & Sons, 1976.

    Google Scholar 

  5. GAO Guo-rui. Classification for microstructure of loess and its collapsibility [J]. Chinese Science, 1980, (12): 1203–1212. (in Chinese)

    Google Scholar 

  6. DIJKSTRA T A, SMALLEY I J, ROGERS C D F. Particle packing in loess deposits and the problem of structure collapse and hydroconsolidation [J]. Engineering Geology, 1995, 40: 49–64.

    Article  Google Scholar 

  7. van GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892–898.

    Article  Google Scholar 

  8. VANAPALLI S K, FREDLUND D G, PUFAHL D E, CLIFTON A W. Model for the prediction of shear strength with respect to soil suction [J]. Canadian Geotechnical Journal, 1996, 33(3): 379–392.

    Article  Google Scholar 

  9. MA S K, HUANG M S, HU P, YANG C. Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay [J]. Journal of Central South University, 2013, 20: 1412–1419.

    Article  Google Scholar 

  10. ZHONG Z L, LIU Y X, LIU X R, LI X Y, WANG S. Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle Pleistocene [J]. Journal of Central South University, 2015, 22: 2776–2782.

    Article  Google Scholar 

  11. VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till [J]. Géotechnique, 1999, 2: 143–159.

    Article  Google Scholar 

  12. YANG H, RAHARDJO H, LEONG E C, FREDLUND D G. Factors affecting drying and wetting soil-water characteristic curves of sandy soils [J]. Canadian Geotechnical Journal, 2004, 41: 980–920.

    Google Scholar 

  13. WHEELER S J, SHARMA R J, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behavior in unsaturated soils [J]. Géotechnique, 2003, 53(1): 41–54.

    Article  Google Scholar 

  14. GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil [J]. Géotechnique, 2003, 53(1): 105–112.

    Article  Google Scholar 

  15. HU R, CHEN Y F, LIU H H, ZHOU C B. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution [J]. Géotechnique, 2013, 63(16): 1389–1405.

    Article  Google Scholar 

  16. SIMMS P H, YANFUL E K. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests [J]. Canadian Geotechnical Journal, 2001, 38(4): 741–754.

    Article  Google Scholar 

  17. ZAPATA C E, HOUSTON W N, HOUSTON S L, WALSH K D. Soil-water characteristic curve variability [J]. Advances in Unsaturated Geotechnics, 2000, 99: 84–124.

    Article  Google Scholar 

  18. PERERA Y Y, ZAPATA C E, HOUSTON W N, HOUSTON S L. Prediction of the soil-water characteristic curve based on grain-size-distribution and index properties [J]. Advances in Pavement Engineering, 2005, 130: 49–60.

    Google Scholar 

  19. FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils [M]. New York: John Wiley & Sons, 1993.

    Book  Google Scholar 

  20. BURGER C A, SHACKELFORD C D. Soil-water characteristic curves and dual porosity of sand-diatomaceous earth mixtures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(9): 790–800.

    Article  Google Scholar 

  21. ELKADY T Y, DAFALLA M A, AL-MAHBASHI A M, AL-SHAMRANI M. Evaluation of soil water characteristic curves of sand-clay mixtures [J]. International Journal of Geomate, 2013, 4(2): 528–532.

    Google Scholar 

  22. LI X, LI J H, ZHANG L M. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters [J]. Computers and Geotechnics, 2014, 57: 85–96.

    Article  Google Scholar 

  23. NG C W W, SADEGHI H, HOSSEN S B, CHIU C F, ALONSO E E, BAGHBANREZVAN S. Water retention and volumetric characteristics of intact and re-compacted loess [J]. Canadian Geotechnical Journal, 2016, dx.doi.org/10.1139/cgj-2015-0364.

    Google Scholar 

  24. GITIRANA G DE F N jr, FREDLUND D G. Soil-water characteristic curve equation with independent properties [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 209–212.

    Article  Google Scholar 

  25. ZHANG L, CHEN Q. Predicting bimodal soil-water characteristic curves [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 666–670.

    Article  Google Scholar 

  26. SATYANAGA A, RAHARDJO H, LEONG E C, WANG J Y. Water characteristic curve of soil with bimodal grain-size distribution [J]. Computers and Geotechnics, 2013, 48: 51–61.

    Article  Google Scholar 

  27. FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated soil mechanics in engineering practice [M]. New York: John Wiley & Sons, 2012.

    Book  Google Scholar 

  28. WILLIAMS R D, AHUJA L R, NANEY J W. Comparison of methods to estimate soil water characteristics from soil texture, bulk density, and limited data [J]. Soil Science, 1992, 153(3): 172–184.

    Article  Google Scholar 

  29. ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data [J]. Soil Science Society of America Journal, 1981, 45(6): 1023–1030.

    Article  Google Scholar 

  30. HAVERKAMP R T, PARLANGE J Y. Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter [J]. Soil Science, 1986, 142(6): 325–339.

    Article  Google Scholar 

  31. SIMMS P H, YANFUL E K. A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils [J]. Canadian Geotechnical Journal, 2005, 42(2): 499–514.

    Article  Google Scholar 

  32. FREDLUND M D. The role of unsaturated soil property functions in the practice of unsaturated soil mechanics [D]. Saskatchewan: University of Saskatchewan, 2000.

    Google Scholar 

  33. FREDLUND D G, XING A. Equations for the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31: 521–532.

    Article  Google Scholar 

  34. GUPTA S, LARSON W E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density [J]. Water Resources Research, 1979, 15(6): 1633–1635.

    Article  Google Scholar 

  35. RAWLS W J, BRAKENSIEK D L, SAXTONN K E. Estimation of soil water properties [J]. Transactions of the ASAE, 1982, 25(5): 1316–1320.

    Article  Google Scholar 

  36. AHUJA L R, NANEY J W, WILLIAMS R D. Estimating soil water characteristics from simpler properties or limited data [J]. Soil Science Society of America Journal, 1985, 49(5): 1100–1105.

    Article  Google Scholar 

  37. RAWLS W J, GISH T J, BRAKENSIEK D L. Estimating soil water retention from soil physical properties and characteristics [J]. Advances in Soil Science, 1991, 16: 213–234.

    Article  Google Scholar 

  38. LU Jing, CHENG Bin. Research on soil-water characteristic curve of unsaturated loess [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1591–1592. (in Chinese)

    Google Scholar 

  39. CHU Feng, SHAO Sheng-jun, CHEN Cun-li. Experimental research on influences of dry density and vertical stress on soil-water characteristic curves of intact unsaturated loess [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 413–420. (in Chinese)

    Google Scholar 

  40. BROOKS R H, COREY A T. Hydraulic properties of porous media and their relation to drainage design [J]. Transactions of the ASAE, 1964, 7(1): 26–28.

    Article  Google Scholar 

  41. CAMPBELL G S. A simple method for determining unsaturated conductivity from moisture retention data [J]. Soil science, 1974, 117(6): 311–314.

    Article  Google Scholar 

  42. AUBERTIN M, MBONIMPA M, BUSSIÈRE B, CHAPUIS R P. A model to predict the water retention curve from basic geotechnical properties [J]. Canadian Geotechnical Journal, 2003, 40(6): 1104–1122.

    Article  Google Scholar 

  43. RAWLS W J, BRAKENSIEK D L. Prediction of soil water properties for hydrologic modeling [J]. American Society of Civil Engineers, 1985: 293–299.

    Google Scholar 

  44. TOMASELLA J, HODNETT M G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia [J]. Soil Science, 1998, 163(3): 190–202.

    Article  Google Scholar 

  45. TINJUM J M, BENSON C H, BLOTZ L R. Soil-water characteristic curves for compacted clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(11): 1060–1069.

    Article  Google Scholar 

  46. TOMASELLA J, HODNETT M G, ROSSATO L. Pedotransfer functions for the estimation of soil water retention in Brazilian soils [J]. Soil Science Society of America Journal, 2000, 64(1): 327–338.

    Article  Google Scholar 

  47. WANG Tie-hang, LU Jing, YUE Cai-kun. Soil-water characteristic curve for unsaturated loess considering temperature and density effect [J]. Rock and Soil Mechanics, 2008, 29(1): 1–5. (in Chinese)

    Google Scholar 

  48. GHANBARIAN-ALAVIJEH B, LIAGHAT A, HUANG G H, VAN GENUCHTEN M T. Estimation of the van Genuchten soil water retention properties from soil textural data [J]. Pedosphere, 2010, 20(4): 456–465.

    Article  Google Scholar 

  49. COSBY B J, HORNBERGER G M, CLAPP R B, GINN T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils [J]. Water Resources Research, 1984, 20(6): 682–690.

    Article  Google Scholar 

  50. MADANKUMAR N. Prediction of soil moisture characteristics from mechanical analysis and bulk density data [J]. Agricultural Water Management, 1985, 10(4): 305–312.

    Article  Google Scholar 

  51. CHIN K B, LEONG E C, RAHARDJO H. A simplified method to estimate the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 2010, 47(12): 1382–1400.

    Article  Google Scholar 

  52. BRUTSAERT W. Some methods of calculating unsaturated permeability [J]. Transactions of the ASAE, 1967, 10(3): 400–404.

    Article  Google Scholar 

  53. SILLERS W S. The mathematical representation of the soil-water characteristic curve [D]. Saskatchewan: University of Saskatchewan, 1997.

    Google Scholar 

  54. SILLERS W S, FREDLUND D G, ZAKERZADEH N. Mathematical attributes of some soil-water characteristic curve models [J]. Geotechnical and Geological Engineering, 2001, 19: 243–283.

    Article  Google Scholar 

  55. ASTM-D6836. Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge [S]. West Conshohocken: Annual Book of ASTM Standards, 2008.

    Google Scholar 

  56. ASSALLAY A M, ROGERS C D F, SMALLEY I J. Formation and collapse of metastable particle packings and open structures in loess deposits [J]. Engineering Geology, 1997, 48(1): 101–115.

    Article  Google Scholar 

  57. HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi. Research on structural behaviour of unsaturated loess [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 775–779. (in Chinese)

    Google Scholar 

  58. JIANG M J, HU H J, PENG J B, LEROUEIL S. Experimental study of two saturated natural soils and their saturated remoulded soils under three consolidated undrained stress paths [J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(2): 225–238.

    Article  Google Scholar 

  59. YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, ZHANG Shi-jing, YANG Xiao-hui. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020–1027. (in Chinese)

    Google Scholar 

  60. WEI Feng, YAO Zhi-hua, SU Li-hai, BAO Liang-liang, FANG Xiang-wei. Study on water holding capacity of unsaturated undisturbed and remolded loess of Q3 [J]. Geotechnical Investigation & Surveying, 2015, 8: 1–6. (in Chinese)

    Google Scholar 

  61. ZHANG Nan, JI Bo-xun. Matrix suction changes of unsaturated loess [J]. Jilin Geology, 2012, 31(2): 137–142. (in Chinese)

    MathSciNet  Google Scholar 

  62. YUAN Zhong-xia, WANG Lan-min, YAN Geng-sheng. Study on soil-water characteristic curves of loess [J]. Geotechnical Investigation & Surveying, 2012, 5: 10–14. (in Chinese)

    Google Scholar 

  63. JIANG M J, ZHANG F G, HU H J, CUI Y J, PENG J B. Structural characterization of natural loess and remolded loess under triaxial tests [J]. Engineering Geology, 2014, 181: 249–260.

    Article  Google Scholar 

  64. SMALLEY I J. “In-situ” theories of loess formation and the significance of the calcium-carbonate content of loess [J]. Earth-Science Reviews, 1971, 7(2): 67–85.

    Article  Google Scholar 

  65. SUN D A, SHENG D C, XU Y F. Collapse behaviour of unsaturated compacted soil with different initial densities [J]. Canadian Geotechnical Journal, 2007, 44: 673–686.

    Article  Google Scholar 

  66. ZHAN L T, YANG Y B, CHEN R, NG C W W, CHEN Y M. Influence of clod size and water content on gas permeability of a compacted loess [J]. Canadian Geotechnical Journal, 2014, 51(12): 1468–1474.

    Article  Google Scholar 

Download references

Acknowledgement

The first author gratefully acknowledges her appreciation to the Chinese Scholarship Council, which funded her Joint PhD research program. The third author thanks the support from Natural Sciences and Engineering Research Council of Canada (NSERC) for his research programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-lu Li  (李同录).

Additional information

Foundation item: Project(41372329) supported by the National Natural Science Foundation of China; Project(2014CB744701) supported by the National Basic Research Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, Tl. & Vanapalli, S.K. Prediction of soil–water characteristic curve for Malan loess in Loess Plateau of China. J. Cent. South Univ. 25, 432–447 (2018). https://doi.org/10.1007/s11771-018-3748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3748-1

Key words

关键词

Navigation