Advertisement

Journal of Central South University

, Volume 25, Issue 2, pp 392–405 | Cite as

FEM-DEM coupled modeling of cone penetration tests in lunar soil

  • Cheng-xiang Lin (林呈祥)
  • Fu-bin Tu (涂福彬)
  • Dao-sheng Ling (凌道盛)
  • Cheng-bao Hu (胡成宝)
Article

Abstract

Cone penetration test (CPT) is an appropriate technique for quickly determining the geotechnical properties of lunar soil, which is valuable for in situ lunar exploration. Utilizing a typical coupling method recently developed by the authors, a finite element method (FEM)-discrete element method (DEM) coupled model of CPTs is obtained. A series of CPTs in lunar soil are simulated to qualitatively reveal the flow of particles and the development of resistance throughout the penetration process. In addition, the effects of major factors, such as penetration velocity, penetration depth, cone tip angle, and the low gravity on the Moon surface are investigated.

Key words

FEM-DEM coupled model cone penetration test lunar soil lunar exploration 

对月壤静力触探实验 FEM-DEM 多尺度耦合的模拟研究

摘要

月壤是原位探月工程研究的直接对象, 其岩土力学性质极具研究价值。 静力触探实验 (CPT) 是一种能够快速确定月壤岩土力学性质的技术方法。 利用近期研发的一种典型耦合理论, 成功获得一种耦合有限元 (FEM) 和离散元 (DEM) 的静力触探多尺度模型。 利用静力触探多尺度模型对不同条件下的月壤静力触探实验进行了模拟研究, 定性揭示了静力触探过程中月壤颗粒的流动情况及阻力的发展情况。 同时, 模拟研究了刺探速度、 深度以及锥尖角度和月表低重力对月壤静力触探的影响。

关键词

FEM-DEM 耦合模型 静力触探实验 月壤 探月工程 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SANDERS G B, LARSON W E. Intergration of in-situ resource utilization into Lunar/Mars exploration through field analogs [J]. Advances in Space Research, 2011, 47(1): 20–29.CrossRefGoogle Scholar
  2. [2]
    ANAND M, CRAWFORD I A, BALAT P M, ABANADES S, VANWESTRENEN W, PERAUDEAU G, JAUMANN R, SEBOLDT W. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) application [J]. Planetary and Space Science, 2012, 74(1): 42–48.CrossRefGoogle Scholar
  3. [3]
    OUYANG Zi-yuan. Introduction to lunar science [M]. Beijing: Astronautic Publishing House, 2005: 196. (in Chinese)Google Scholar
  4. [4]
    BOLES W, SCOTT W, CONNOLLY J. Excavation forces in reduced gravity environment [J]. Aerospace Engineering, 1997, 10(2): 99–103.CrossRefGoogle Scholar
  5. [5]
    BUI H H, KOBAYASHI T, FUKAGAWA R, WELLS J C. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations [J]. Journal of Terramechanics, 2009, 46(3): 115–124.CrossRefGoogle Scholar
  6. [6]
    KOBAYASHI T, OCHIAI H, YASUFUKU N, OMINE K. Prediction of soil collapse by lunar surface operations in reduced gravity environment [C]//Proceedings of the 15th International Conference of the ISTVS. Hayama, Japan, 2005: 1–9.Google Scholar
  7. [7]
    NAKASHIMA H, SHIOJI Y, TATEYAMA K, AOKI S, KANAMORI H, YOKOYAMA T. Specific cutting resistance of lunar regolith stimulant under low gravity conditions [J]. Journal of Space Engineering, 2008, 1(1): 58–68.CrossRefGoogle Scholar
  8. [8]
    JI S Y, SHEN H H. Two-dimensional simulation of the angle of repose for a particle system with electrostatic charge under lunar and earth gravity [J]. Journal of Aerospace Engineering, 2009, 22(1): 10–14.MathSciNetCrossRefGoogle Scholar
  9. [9]
    KOBAYASHI T, FUJIWARA Y, YAMAKAWA J, YASUFUKU N, OMINE K. Mobility performance of a rigid wheel in low gravity environments [J]. Journal of Terra-mechanics, 2010, 47(4): 261–274.CrossRefGoogle Scholar
  10. [10]
    JIANG M J, LIU F, SHEN Z F, ZHENG M. Distinct element simulation of lugged wheel performance under extraterrestrial environmental effects [J]. Acta Astronautica, 2014a, 99, 11: 37–51.CrossRefGoogle Scholar
  11. [11]
    NAKASHIMA H, KOBAYASHI T. Effects of gravity on rigid rover wheel sinkage and motion resistance assessed using two-dimensional discrete element method [J]. Journal of Terramechanics, 2014, 53(1): 37–45.CrossRefGoogle Scholar
  12. [12]
    COSTES N C, COHRON G T, MOSS D C. Cone penetration resistance test-an approach to evaluating in-place strength and packing characteristics of lunar soils [C]//Proceedings of the Second Lunar Science Conference. Houston, USA: The M.I.T. Press, 1971: 1973–1987.Google Scholar
  13. [13]
    MITCHELL J K, SCOTT R F, HOUSTON W N, COSTES N C, CARRIER W D, BROMWELL L. Mechanical properties of lunar soil: Density, porosity, cohesion, and angle of internal friction [C]//Proceedings of the Third Lunar Science Conference. Houston, USA: ASCE, 1972: 3235–3253.Google Scholar
  14. [14]
    HOUSTON W N, NAMIQ L I. Penetration resistance of lunar soils [J]. Journal of Terramechanics, 1971, 8(1): 59–69.CrossRefGoogle Scholar
  15. [15]
    JIANG Ming-jing, DAI Yong-sheng, WANG Xin-xin. DEM analysis of cone penetration tests under low gravity conditions [J]. Chinese Journal of Geotechnical Engineering, 2014b, 36, 11: 2045–2053. (in Chinese)Google Scholar
  16. [16]
    LIN Cheng-xiang, LING Dao-sheng, ZHONG Shi-ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(9): 1679–1691. (in Chinese)Google Scholar
  17. [17]
    HUANG Z Y, YANG Z X, WANG Z Y. Discrete element modeling of sand behavior in a biaxial shear test [J]. Journal of Zhejiang University: Science A, 2008, 9(9): 1176–1183.CrossRefGoogle Scholar
  18. [18]
    NAKASHIMA H, FUJII H, OIDA A, MOMOZU M, KAWASE Y, KANAMORI H, AOKI S, YOKOYAMA T. Parametric analysis of lugged wheel performance for a lunar micro-rover by means of DEM [J]. Journal of Terramechanics, 2007, 44(2): 153–162.CrossRefGoogle Scholar
  19. [19]
    NAKASHIMA H, FUJII H, OIDA A, MOMOZU M, KANAMORI H, AOKI S, YOKOYAMA T, SHIMIZU H, MIYASAKA J, OHDOI K. Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain [J]. Journal of Terra-mechanics, 2010, 47(5): 307–321.CrossRefGoogle Scholar
  20. [20]
    LI W, GAO F, JIA Y. Tractive performance analysis on radially deployable wheel configuration of lunar rover vehicle by discrete element method [J]. Chinese Journal of Mechanical Engineering, 2008, 21(5): 13–18.CrossRefGoogle Scholar
  21. [21]
    LI W, HUANG Y, CUI Y, DONG S J, WANG J. Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion [J]. Journal of Terra-mechanics, 2010, 47(3): 161–172.CrossRefGoogle Scholar
  22. [22]
    CUNDALL P A. A discontinuous future for numerical modeling in geomechanics [J]. Geotechnical Engineering, 2001, 149 (1): 41–47.Google Scholar
  23. [23]
    ELMEKATI A, SHAMY U E. A practical co-simlation approach for multiscale analysis of geotechnical systems [J]. Computers and Geotechnics, 2010, 37(4): 494–503.CrossRefGoogle Scholar
  24. [24]
    LI X, WAN K. A bridging scale method for granular materials with discrete particle assembly-Cosserat continuum modeling [J]. Computer and Geotechnics, 2011, 38(8): 1052–1068.CrossRefGoogle Scholar
  25. [25]
    WELLMANN C, WRIGGERS P. A two-scale model of granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 205–208(1): 46–58.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    ROUSSEAU J, FRANGIN E, MARIN P, DAUDEVILLE L. Multidomain finite and discrete elements method for impact analysis of a concrete structure [J]. Engineering Structures, 2009, 31(11): 2735–2743.CrossRefGoogle Scholar
  27. [27]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Geotéchnique, 1979, 29(1): 47–65.CrossRefGoogle Scholar
  28. [28]
    TU F B, LING D S, BU L F, YANG Q D. Generalized bridging region method for coupling finite elements with discrete elements [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 276(7): 509–533.MathSciNetCrossRefGoogle Scholar
  29. [29]
    CARRIER W D, MITCHELL J K, MAHMOOD A. The nature of lunar soil [J]. Journal of the Soil Mechanic Sand Foundation Division, 1973, 99(10): 813–832.Google Scholar
  30. [30]
    MORRIS R V, SCORE R, DARDANO C, HEIKEN G. Handbook of Lunar Soils [C]//Planetary Materials Branch Publication 67. NASA Johnson Space Center, Houston: JSC Publication No. 19069, 1983: 914.Google Scholar
  31. [31]
    SLYUTA E N. Physical and mechanical properties of the lunar soil (a review) [J]. Solar System Research, 2014, 48(5): 330–353.CrossRefGoogle Scholar
  32. [32]
    CARRIER W D, OLHOEFT G R, MENDELL W. Physical properties of the lunar surface [C]//HEIKEN G, VANIMAN D, FRENCH B M. Lunar Sourcebook. New York: Cambridge University Press, 1991: 475–594.Google Scholar
  33. [33]
    STESKY R M, RENTON B. Compressional and shear wave velocities in powdered rock under low loads [C]//The 8th Proceeding of Lunar Science Conference. Mississauga, Ontario, Canada: Erindale College, 1977: 1225–1233.Google Scholar
  34. [34]
    CHOATE R, BATTERSON S A, CHRISTENSEN E M, HUTTON R E, JAFFE L D, JONES R H, KO H Y, SCOTT R F, SPENCER R L, SPERLING F B, SUTTON G H. Lunar surface mechanical properties [J]. Journal of Geophysical Research, 1969, 74(25): 6149–6174.CrossRefGoogle Scholar
  35. [35]
    TSUJI T, KOBAYASHI T, AOKI S, KANAMORI H, AIZAWA T, MATSUOKA T. Elastic properties of lunar regolith from vertical seismic profiling [C]//Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. Pasadena: ASCE, 2012: 84–93.CrossRefGoogle Scholar
  36. [36]
    CHERKASOV I I, SHVAREV V V. Soviet investigations of the mechanics of lunar soils [J]. Soil Mechanics and Foundation Engineering, 1973, 10(4): 252–256.CrossRefGoogle Scholar
  37. [37]
    KLOSKY J, STURE S, KO H, BAMES F. Geotechnical behavior of JSC-1 lunar soil simulant [J]. Journal of Aerospace Engineering, 2000, 13(4): 133–138.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geotechnical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations