Skip to main content
Log in

Kinematic analysis of shallow tunnel in layered strata considering joined effects of settlement and seepage

沉降与渗流联合作用下层状地层浅埋隧道运动分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The purpose of this work is to predict the state of collapse in shallow tunnel in layered strata by using a new curved failure mechanism within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of seepage forces and surface settlement. Furthermore, the Hoek-Brown nonlinear failure criterion is adopted to analyze the influence of different factors on the collapsing shape. Two different curve functions which describe two different rock layers are obtained by virtual work equations under the variational principle. According to the numerical results, the parameter B in Hoek-Brown failure criterion and the unit weights in different rock layers have a positive relationship with the size of collapsing block while pore pressure coefficient and the parameter A in Hoek-Brown failure criterion present a reverse tend.

摘要

极限分析是一种预测岩土工程稳定性的重要工具。 近年来随着隧道工程的发展, 关于浅埋隧道开挖中地下水对隧道顶部稳定性的研究越来越重要。 在本文中, 作者探究了孔隙水压力和表面地表沉降共同作用下浅埋隧道顶部在层状岩层中的破坏模式。 本研究应用上限分析理论, 并采用 Hoek-Brown 非线性破坏准则来探索不同因素对浅埋隧道破坏模式和支护系统的影响。 以双层岩层为例, 通过两条不同的非线性破坏面的引入, 本文得到了描述层状岩石层中不同的隧道破坏模式。 本文另一创新是通过固体力学变分法得到强非线性方程, 并通过数值方法得到浅埋隧道的破坏模式。 另外本文深入探索了不同参数对隧道破坏模式的影响。 通过数据和画图的形式讨论了不同因素对隧道破坏模式的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(2): 216–223.

    Article  MATH  Google Scholar 

  2. CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier, 1975: 47–99.

    Google Scholar 

  3. LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material [J]. Geotechnique, 1990, 40(4): 581–606.

    Article  Google Scholar 

  4. SOUBRA A H. Three-dimensional face stability analysis of shallow circular tunnels [C]//Proceedings of the International Conference on Geotechnical and Geological Engineering. Melbourne, Australia, 2000: 19–24.

    Google Scholar 

  5. MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1314–1325.

    Article  Google Scholar 

  6. YANG X L, XU J S, LI Y X, YAN R M. Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule [J]. Geomechanics and Engineering, 2016, 10(1): 21–35.

    Article  Google Scholar 

  7. YANG X L, QIN C B. Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion [J]. Geomechanics and Engineering, 2014, 6(5): 503–515.

    Article  Google Scholar 

  8. MOLLON G, DIAS D, SOUBRA A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1363–1388.

    Article  Google Scholar 

  9. YANG X L, YAO C. Stability of tunnel roof in nonhomogeneous soils [J]. International Journal of Geomechanics, 2018, 18, 3: 06018002. DOI: 10.1061/(ASCE)GM.1943-5622.0001104.

    Article  Google Scholar 

  10. YANG X L. Lower bound analytical solution for bearing capacity factor using modified Hoek–Brown failure criterion [J]. Canadian Geotechnical Journal, 2018. DOI: 10.1139/cgj-2016–0694.

    Google Scholar 

  11. YANG X L, ZHANG R. Limit analysis of stability of twin shallow tunnels considering surface settlement [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017–1398-8.

    Google Scholar 

  12. XU J S, YANG X L. Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic Soil [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017-1958-y.

    Google Scholar 

  13. LI T Z, YANG X L. Risk assessment model for water and mud inrush in deep and long tunnels based on normal grey cloud clustering method [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017-0553-6

    Google Scholar 

  14. YANG X L, LI Z W, LIU Z A, XIAO H B. Collapse analysis of tunnel floor in karst area based on Hoek-Brown rock media [J]. Journal of Central South University, 2017, 24(4): 957–966.

    Article  Google Scholar 

  15. HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.

    Article  Google Scholar 

  16. FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665–673.

    Article  Google Scholar 

  17. SUBRIN D, WONG H. Tunnel face stability in frictional material: A new 3D failure mechanism [J]. Computes Mechanique, 2012, 330(7): 513–519.

    MATH  Google Scholar 

  18. WANG X Y, TAN Z S, WANG M S, ZHANG M, HUANG F M. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level [J]. Tunnelling and Underground Space Technology, 2008, 23(5): 552–560.

    Article  Google Scholar 

  19. HUANG F M, WANG M S, TAN Z S, WANG X Y. Analytical solutions for stead seepage into an underwater circular tunnel [J]. Tunnelling and Underground Space Technology, 2010, 25(4): 391–396.

    Article  Google Scholar 

  20. FENG K, HE C, ZHOU J M, ZHANG Z. Model test on impact of surrounding rock deterioration on segmental lining structure for underwater shield tunnel with large cross-section [J]. Procedia Environmental Sciences, 2012, 12: 891–898.

    Article  Google Scholar 

  21. YANG X L, YAN R M. Collapse mechanism for deep tunnel subjected to seepage force in layered soils [J]. Geomechanics and Engineering, 2015, 8(5): 741–756.

    Article  Google Scholar 

  22. SAADA Z, MAGHOUS S, GARNIER D. Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55(1): 45–54.

    Article  Google Scholar 

  23. OSMAN A S. Stability of unlined twin tunnels in undrained clay [J]. Tunnelling and Underground Space Technology, 2010, 25(2): 290–296.

    Article  Google Scholar 

  24. XU J S, LI Y X, YANG X L. Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope [J]. Geomechanics and Engineering, 2018, 14(1): 71–81.

    Google Scholar 

  25. XU J S, PAN Q J, YANG X L, LI W T. Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion [J]. International Journal of Geomechanics, 2018, 8, 1: 04017133.

    Article  Google Scholar 

  26. LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels [J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31–40.

    Article  MathSciNet  Google Scholar 

  27. NAKAMURA H, KUBOTA T, FURUKAWA M, NAKAO T. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine [J]. Tunnelling and Underground Space Technology, 2003, 18(2, 3): 253–262.

    Article  Google Scholar 

  28. YANG X L. Effect of pore-water pressure on 3D stability of rock slope [J]. International Journal of Geomechanics, 2017, 17, 9: 06017015. DOI: 10.1061/(ASCE)GM.1943-5622. 0000969.

    Article  Google Scholar 

  29. YANG X L, ZHANG R. Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation [J]. Geomechanics and Engineering, 2017, 13(2): 217–235.

    Google Scholar 

  30. YANG Z H, ZHANG R, XU J S, YANG X L. Energy analysis of rock plug thickness in karst tunnels based on non-associated flow rule and nonlinear failure criterion [J]. Journal of Central South University, 2017, 24(12): 2940–2950.

    Article  Google Scholar 

  31. LI T Z, LI Y X, YANG X L. Rock burst prediction based on genetic algorithms and extreme learning machine [J]. Journal of Central South University, 2017, 24(9): 2105–2113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-ping Lu  (鲁四平).

Additional information

Foundation item: Project(51378510) supported by the National Natural Science Foundation of China; Project(2017zzts157) supported by the Innovation Foundation for Postgraduate of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Lu, Sp. Kinematic analysis of shallow tunnel in layered strata considering joined effects of settlement and seepage. J. Cent. South Univ. 25, 368–378 (2018). https://doi.org/10.1007/s11771-018-3743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3743-6

Key words

关键词

Navigation