Advertisement

Journal of Central South University

, Volume 25, Issue 2, pp 368–378 | Cite as

Kinematic analysis of shallow tunnel in layered strata considering joined effects of settlement and seepage

Article
  • 43 Downloads

Abstract

The purpose of this work is to predict the state of collapse in shallow tunnel in layered strata by using a new curved failure mechanism within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of seepage forces and surface settlement. Furthermore, the Hoek-Brown nonlinear failure criterion is adopted to analyze the influence of different factors on the collapsing shape. Two different curve functions which describe two different rock layers are obtained by virtual work equations under the variational principle. According to the numerical results, the parameter B in Hoek-Brown failure criterion and the unit weights in different rock layers have a positive relationship with the size of collapsing block while pore pressure coefficient and the parameter A in Hoek-Brown failure criterion present a reverse tend.

Key words

collapse mechanism layered rocks Hoek-Brown criterion seepage force surface settlement 

沉降与渗流联合作用下层状地层浅埋隧道运动分析

摘要

极限分析是一种预测岩土工程稳定性的重要工具。 近年来随着隧道工程的发展, 关于浅埋隧道开挖中地下水对隧道顶部稳定性的研究越来越重要。 在本文中, 作者探究了孔隙水压力和表面地表沉降共同作用下浅埋隧道顶部在层状岩层中的破坏模式。 本研究应用上限分析理论, 并采用 Hoek-Brown 非线性破坏准则来探索不同因素对浅埋隧道破坏模式和支护系统的影响。 以双层岩层为例, 通过两条不同的非线性破坏面的引入, 本文得到了描述层状岩石层中不同的隧道破坏模式。 本文另一创新是通过固体力学变分法得到强非线性方程, 并通过数值方法得到浅埋隧道的破坏模式。 另外本文深入探索了不同参数对隧道破坏模式的影响。 通过数据和画图的形式讨论了不同因素对隧道破坏模式的影响。

关键词

破坏机制 层状岩体 Hoek-Brown 准则 渗流力 表面沉降 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(2): 216–223.CrossRefMATHGoogle Scholar
  2. [2]
    CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier, 1975: 47–99.Google Scholar
  3. [3]
    LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material [J]. Geotechnique, 1990, 40(4): 581–606.CrossRefGoogle Scholar
  4. [4]
    SOUBRA A H. Three-dimensional face stability analysis of shallow circular tunnels [C]//Proceedings of the International Conference on Geotechnical and Geological Engineering. Melbourne, Australia, 2000: 19–24.Google Scholar
  5. [5]
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1314–1325.CrossRefGoogle Scholar
  6. [6]
    YANG X L, XU J S, LI Y X, YAN R M. Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule [J]. Geomechanics and Engineering, 2016, 10(1): 21–35.CrossRefGoogle Scholar
  7. [7]
    YANG X L, QIN C B. Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion [J]. Geomechanics and Engineering, 2014, 6(5): 503–515.CrossRefGoogle Scholar
  8. [8]
    MOLLON G, DIAS D, SOUBRA A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1363–1388.CrossRefGoogle Scholar
  9. [9]
    YANG X L, YAO C. Stability of tunnel roof in nonhomogeneous soils [J]. International Journal of Geomechanics, 2018, 18, 3: 06018002. DOI: 10.1061/(ASCE)GM.1943-5622.0001104.CrossRefGoogle Scholar
  10. [10]
    YANG X L. Lower bound analytical solution for bearing capacity factor using modified Hoek–Brown failure criterion [J]. Canadian Geotechnical Journal, 2018. DOI: 10.1139/cgj-2016–0694.Google Scholar
  11. [11]
    YANG X L, ZHANG R. Limit analysis of stability of twin shallow tunnels considering surface settlement [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017–1398-8.Google Scholar
  12. [12]
    XU J S, YANG X L. Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic Soil [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017-1958-y.Google Scholar
  13. [13]
    LI T Z, YANG X L. Risk assessment model for water and mud inrush in deep and long tunnels based on normal grey cloud clustering method [J]. KSCE Journal of Civil Engineering, 2017. DOI: 10.1007/s12205-017-0553-6Google Scholar
  14. [14]
    YANG X L, LI Z W, LIU Z A, XIAO H B. Collapse analysis of tunnel floor in karst area based on Hoek-Brown rock media [J]. Journal of Central South University, 2017, 24(4): 957–966.CrossRefGoogle Scholar
  15. [15]
    HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.CrossRefGoogle Scholar
  16. [16]
    FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665–673.CrossRefGoogle Scholar
  17. [17]
    SUBRIN D, WONG H. Tunnel face stability in frictional material: A new 3D failure mechanism [J]. Computes Mechanique, 2012, 330(7): 513–519.MATHGoogle Scholar
  18. [18]
    WANG X Y, TAN Z S, WANG M S, ZHANG M, HUANG F M. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level [J]. Tunnelling and Underground Space Technology, 2008, 23(5): 552–560.CrossRefGoogle Scholar
  19. [19]
    HUANG F M, WANG M S, TAN Z S, WANG X Y. Analytical solutions for stead seepage into an underwater circular tunnel [J]. Tunnelling and Underground Space Technology, 2010, 25(4): 391–396.CrossRefGoogle Scholar
  20. [20]
    FENG K, HE C, ZHOU J M, ZHANG Z. Model test on impact of surrounding rock deterioration on segmental lining structure for underwater shield tunnel with large cross-section [J]. Procedia Environmental Sciences, 2012, 12: 891–898.CrossRefGoogle Scholar
  21. [21]
    YANG X L, YAN R M. Collapse mechanism for deep tunnel subjected to seepage force in layered soils [J]. Geomechanics and Engineering, 2015, 8(5): 741–756.CrossRefGoogle Scholar
  22. [22]
    SAADA Z, MAGHOUS S, GARNIER D. Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55(1): 45–54.CrossRefGoogle Scholar
  23. [23]
    OSMAN A S. Stability of unlined twin tunnels in undrained clay [J]. Tunnelling and Underground Space Technology, 2010, 25(2): 290–296.CrossRefGoogle Scholar
  24. [24]
    XU J S, LI Y X, YANG X L. Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope [J]. Geomechanics and Engineering, 2018, 14(1): 71–81.Google Scholar
  25. [25]
    XU J S, PAN Q J, YANG X L, LI W T. Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion [J]. International Journal of Geomechanics, 2018, 8, 1: 04017133.CrossRefGoogle Scholar
  26. [26]
    LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels [J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31–40.MathSciNetCrossRefGoogle Scholar
  27. [27]
    NAKAMURA H, KUBOTA T, FURUKAWA M, NAKAO T. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine [J]. Tunnelling and Underground Space Technology, 2003, 18(2, 3): 253–262.CrossRefGoogle Scholar
  28. [28]
    YANG X L. Effect of pore-water pressure on 3D stability of rock slope [J]. International Journal of Geomechanics, 2017, 17, 9: 06017015. DOI: 10.1061/(ASCE)GM.1943-5622. 0000969.CrossRefGoogle Scholar
  29. [29]
    YANG X L, ZHANG R. Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation [J]. Geomechanics and Engineering, 2017, 13(2): 217–235.Google Scholar
  30. [30]
    YANG Z H, ZHANG R, XU J S, YANG X L. Energy analysis of rock plug thickness in karst tunnels based on non-associated flow rule and nonlinear failure criterion [J]. Journal of Central South University, 2017, 24(12): 2940–2950.CrossRefGoogle Scholar
  31. [31]
    LI T Z, LI Y X, YANG X L. Rock burst prediction based on genetic algorithms and extreme learning machine [J]. Journal of Central South University, 2017, 24(9): 2105–2113.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Civil EngineeringCentral South UniversityChangshaChina

Personalised recommendations