Journal of Central South University

, Volume 25, Issue 2, pp 277–286 | Cite as

Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 optical glass

  • Pei-yi Zhao (赵培轶)
  • Ming Zhou (周明)
  • Yuan-jing Zhang (张元晶)
  • Guo-chao Qiao (乔国朝)


Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components. In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials, the surface morphologies of grinding wheel were obtained firstly in the present work, the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated, the theoretical model for surface roughness was developed based on the above analysis. The prediction model was developed by using Gaussian processing regression (GPR) due to the influence of brittle fracture on machined surface roughness. In order to validate both the proposed theoretical and GPR models, 32 sets of experiments of ultrasonic vibration assisted grinding of BK7 optical glass were carried out. Experimental results show that the average relative errors of the theoretical model and GPR prediction model are 13.11% and 8.12%, respectively. The GPR prediction results can match well with the experimental results.

Key words

surface roughness prediction model ultrasonic vibration optical glass GPR regression 

BK7 光学玻璃超声振动磨削加工表面粗糙度预测模型


在光学玻璃零件加工过程中, 对加工表面粗糙度进行预测是提升整个制造工艺链效率和减小总体加工成本的关键。 为预测脆性材料超声振动磨削过程中的加工表面粗糙度, 首先获取金刚石砂轮表面的实际微观形貌, 建立砂轮表面数字化仿真模型, 并分析超声振动磨削过程中磨粒的运动轨迹, 建立加工表面粗糙度的理论预测模型。 超声振动加工过程中材料脆性断裂对加工表面粗糙度影响严重, 因此采用高斯过程回归 (GPR) 方法对理论预测模型进行了修正。 为验证理论模型和 GPR 模型的准确性, 进行 32 组 BK7 光学玻璃超声振动磨削加工实验。 结果表明: 理论模型和 GPR 预测模型的平均误差分别为 13.11%和 8.12%。 GPR 预测模型所获预测结果与实验值吻合较好。


表面粗糙度 预测模型 超声振动 光学玻璃 高斯过程回归 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BRINKSMEIER E, MUTLUGUNES Y, KLOCKE F, AURICH J C, SHORE P, OHMORI H. Ultra-precision grinding [J]. Manufacturing Technology, 2010, 59(2): 652–671. DOI: 10.1016/j.cirp.2010.05.001.Google Scholar
  2. [2]
    ONO T, MATSUMURA T. Influence of tool inclination on brittle fracture in glass cutting with ball end mills [J]. Journal of Materials Processing Technology, 2008, 202(1–3): 61–69. DOI: 10.1016/j.jmatprotec.2007.08.068.CrossRefGoogle Scholar
  3. [3]
    FANG Feng-zhou, ZHANG G X. An experimental study of optical glass machining [J]. International Journal of Advanced Manufacturing Technology, 2004, 23(3, 4): 155–160. DOI: 10.1007/s00170-003-1576-3.CrossRefGoogle Scholar
  4. [4]
    ZHOU Ming, WANG X J, NGOI B K A, GAN J G K. Brittle-ductile transition in diamond cutting of glasses with the aid of ultrasonic vibration [J]. Journal of Materials Processing Technology, 2002, 121(2, 3): 243–251. DOI: 10.1016/j.jmatprotec.2009.03.002.CrossRefGoogle Scholar
  5. [5]
    LIU Kui, LI Xiao-ping, RAHMAN M. Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide [J]. International Journal of Advanced Manufacturing Technology, 2008, 35(7, 8): 833–841. DOI: 10.1007/s00170-006–0761-6.CrossRefGoogle Scholar
  6. [6]
    FANG Feng-zhou, NI Hao, GONG Hu. Rotary ultrasonic machining of hard and brittle materials [J]. Nanotechnology & Precision Engineering, 2014, 12(3): 227–234. DOI: 10.13494/j.npe.20130106.Google Scholar
  7. [7]
    MAHADDALKAR P M, MILLER M H. Force and thermal effects in vibration-assisted grinding [J]. International Journal of Advanced Manufacturing Technology, 2014, 71(5–8): 1117–1122. DOI: 10.1007/s00170-013-5537-1.CrossRefGoogle Scholar
  8. [8]
    ZHANG Jian-hua, ZHAO Yan, TIAN Fu-qiang, ZHANG Shuo, GUO Lan-shen. Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass [J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9): 1893–1904. DOI: 10.1007/s00170-014–6761-z.Google Scholar
  9. [9]
    FENG Ping-fa, LIANG Gui-qiang, ZHANG Jian-fu. Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites [J]. Ceramics International, 2014, 40(7): 10817–10823. DOI: 10.1016/j.ceramint.2014.03.073.CrossRefGoogle Scholar
  10. [10]
    HE Yu-hui, ZHOU Qun, ZHOU Jian-jie, LANG Xian-jun. Comprehensive modeling approach of axial ultrasonic vibration grinding force [J]. Journal of Central South University, 2016, 23(3): 562–569. DOI: 10.1007/s11771-016–3103-3.CrossRefGoogle Scholar
  11. [11]
    DABNUN M A, HASHMI M S J, EIBARADIE M A. Surface roughness prediction model by design of experiments for turning machinable glass–ceramic (Macor) [J]. Journal of Materials Processing Technology, 2005, 164–165: 1289–1293. DOI: 10.1016/j.jmatprotec.2005.02.062.CrossRefGoogle Scholar
  12. [12]
    ALI Y M, ZHANG Liang-chi. Surface roughness prediction of ground components using a fuzzy logic approach [J]. Journal of Materials Processing Technology, 1999, 89, 90, 99: 561–568. DOI: 10.1016/S0924-0136(99)00022-9.CrossRefGoogle Scholar
  13. [13]
    ZHANG Jian-hua, WANG Li-ying, TIAN Fu-qiang, ZHAO Yan, WEI Zhi. Modeling study on surface roughness of ultrasonic-assisted micro end grinding of silica glass [J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1): 1–12. DOI: 10.1007/s00170-015–8181-0.Google Scholar
  14. [14]
    PARK C, HUANG Jian-hua Z, DING Yu. Domain decomposition approach for fast Gaussian Process Regression of large apatial data sets [J]. Journal of Machine Learning Research, 2011, 12: 1697–1728.MATHGoogle Scholar
  15. [15]
    MACKAY D J. Gaussian processes-a replacement for supervised neural networks [J]. Stochastic Modelling & Applied Probability, 1999, 11(3): 1–5.Google Scholar
  16. [16]
    QIAO Guo-chao, DONG Guo-jun, ZHOU Ming. Simulation and assessment of diamond mill grinding wheel topography [J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9): 2085–2093. DOI: 10.1007/s00170-013-4807-2.CrossRefGoogle Scholar
  17. [17]
    LIU Yue-ming, WARKENTIN A, BAUER R, GONG Ya-dong. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations [J]. Precision Engineering, 2013, 37(3): 758–764. DOI: 10.1016/j.precisioneng.2013.02.009.CrossRefGoogle Scholar
  18. [18]
    GU Wei-bin, YAO Zhen-qiang, LIANG Xin-guang. Material removal of optical glass BK7 during single and double scratch tests [J]. Wear, 2011, 270(3, 4): 241–246. DOI: 10.1016/j.wear.2010.10.064.CrossRefGoogle Scholar
  19. [19]
    CHENG Jun, GONG Ya-dong, WANG Jin-sheng. Modeling and evaluating of surface roughness prediction in microgrinding on soda-lime glass considering tool characterization [J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1091–1100. DOI: 10.3901/CJME.2013.06.1091.CrossRefGoogle Scholar
  20. [20]
    RASMUSSEN C E. Gaussian processes in machine learning [M]. Advanced Lectures on Machine Learning. Springer, Berlin Heidelberg New York, 2004: 63–71. DOI: 10.1007/978–3-540-28650-9-4.CrossRefGoogle Scholar
  21. [21]
    CONG Wei-long, PEI Zhi-jian, SUN X, ZHANG C L. Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force [J]. Ultrasonics, 2014, 54(2): 663–675. DOI: 10.1016/j.ultras.2013.09.005.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pei-yi Zhao (赵培轶)
    • 1
  • Ming Zhou (周明)
    • 1
  • Yuan-jing Zhang (张元晶)
    • 1
  • Guo-chao Qiao (乔国朝)
    • 2
  1. 1.School of Mechanical and Electrical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Mechanical and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations