Applied Geophysics

, Volume 14, Issue 4, pp 590–605 | Cite as

Forward modeling and inversion of tensor CSAMT in 3D anisotropic media

Article

Abstract

Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.

Keywords

tensor CSAMT staggered-grid finite difference method axial anisotropy LBFGS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Jorge Nocedal’s team for providing the LBFGS code.

References

  1. Boerner, D. E., Wright, J. A., Thurlow, J. G., and Reed, L. E., 1993, Tensor CSAMT studies at the Buchans Mine in central New found land: Geophysics, 58(1), 12–19.Google Scholar
  2. Caldwell, T. G., Bibby, H. M., and Colin, B., 2002, Controlled source apparent resistivity tensors and their relationship to the Magnetotelluric impedance tensor: Geophysical Journal International, 151, 755–770.Google Scholar
  3. Commer, M., and Newman, G. A., 2008, New advances in three-dimensional controlled-source electromagnetic inversion: Geophysical Journal International, 172, 513–535.Google Scholar
  4. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration: Geophysics, 75(5), 75A67–75A81.Google Scholar
  5. Egbert, G. D., and Kelbert, A., 2012, Computational recipes for electromagnetic inverse problems: Geophysical Journal International, 189, 251–267.Google Scholar
  6. Freund, R. W. and Nachtigal, N. M., 1991, QMR: a quasiminimal residual method for non-Hermitian linear systems: Numerische Mathematik, 60(1), 315–339.Google Scholar
  7. Garcia, X., Boerner, D., and Pedersen, L. B., 2003, Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada): Geophysical Journal International, 154, 957–969.Google Scholar
  8. Garcia, X., and Jones, A. G., 2008, Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform: Geophysics, 73(6), F223–F234.Google Scholar
  9. Hagiwara, T., 2012, Determination of dip and anisotropy from transient triaxial induction measurements: Geophysics, 77(4), D105–D112.Google Scholar
  10. Hu, Y. C., Li, T. L., Fan, C. S., et al., 2005, Threedimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method: Applied Geophysics, 12(1), 35–46.Google Scholar
  11. Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74(2), F9–F20.Google Scholar
  12. Key, K., 2016, MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data: Geophys J. Int, 207, 571–588.Google Scholar
  13. Korvin, G., 2012, Bounds for the Resistivity Anisotropy in Thinly-Laminated Sand-Shale: Petrophysics, 53(1), 14–21.Google Scholar
  14. Lei, D., Zhang, G., Huang, G., et al., 2014, The Application of Tensor CSAMT Method: Chinese Journal of Engineering Geophysics (in Chinese), 11(3), 1672–7940.Google Scholar
  15. Li, X., Oskooi, B., and Pedersen, B. L., 2000, Inversion of controlled-source tensor magnetotelluric data for a layered earth with azimuthal anisotropy: Geophysics, 65(2), 452–464.Google Scholar
  16. Li, X., and Pedersen, L. B., 1991, Controlled source tensor magnetotellurics: Geophysics, 56(9), 1456–1461.Google Scholar
  17. Li, X., and Pedersen, L. B., 1992, Controlled-source tensor magnetotelluric responses of a layered earth with azimuthal anisotropy: Geophysical Journal International, 111, 91–103.Google Scholar
  18. Li, Y., and Pek, J., 2008, Adaptive finite element modelling of two-dimensional Magnetotelluric fields in general anisotropic media: Geophysical Journal International, 175, 942–954.Google Scholar
  19. Li, Y., and Key, K., 2007, 2D marine controlled-source electromagnetic modeling: Part I-an adaptive finiteelement algorithm: Geophysics, 72(2), WA51–WA62.Google Scholar
  20. Liu, Y., and Yin, C., 2013, Electromagnetic divergence correction for 3D anisotropic EM modeling: Journal of Applied Geophysics, 96, 19–27.Google Scholar
  21. Lin, C., Tan, H., Shu, Q., et al., 2012, Three-dimensional conjugate gradient inversion of CSAMT data: Chinese J. Geophys. (in Chinese), 55(11), 3829–3838.Google Scholar
  22. Lu, X., Martyn, U., and John, B., 1999, Rapid relaxation inversion of CSAMT data: Geophysical Journal International, 138, 381–392.Google Scholar
  23. Newman, G. A., and Alumbaugh, D. L., 2000, Threedimensional Magnetotelluric inversion using non-linear conjugate gradients: Geophysical Journal International, 140, 410–424.Google Scholar
  24. Newman, G. A., Commer, M., and Carazzone, J. J., 2010, Imaging CSEM data in the presence of electrical anisotropy: Geophysics, 75(2), F51–F61.Google Scholar
  25. Nichols, E. A., Morrison, H. F., and Clarke, J., 1988, Signals and noise in measurements of low-frequency geomagnetic fields: Journal of Geophysical Research-Solid Earth and Planets, 93(B11), 13743–13754.Google Scholar
  26. North, L. J., and Best, A. I., 2014, Anomalous electrical resistivity anisotropy in clean reservoir sandstones: Geophysical Prospecting, 62(6), 1315–1326.Google Scholar
  27. Nocedal, J. and Wright, S. J., 2006, Numerical Optimization (2nd ed): Springer Verlag, New York, 135–160.CrossRefGoogle Scholar
  28. Routh, P. S., and Oldenburg, D. W., 1999, Inversion of controlled source audio-frequency Magnetotelluric data for a horizontally layered Earth: Geophysics, 64(6), 1689–1697.Google Scholar
  29. Troiano, A., Giuseppe, M. G. D., Petrillo, Z., and Patella, D., 2009, Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy): Journal of Geophysics & Engineering, 6(2), 120–130.Google Scholar
  30. Wang, Y., Di, Q., and Wang, R., 2017a, Three-dimensional modeling of controlled-source audio-frequency magnetotellurics using the finite element method on an unstructured grid: Chinese J. Geophys. (in Chinese), 60(3), 1158–1167.Google Scholar
  31. Wang, K., Tan, H., and Wang, T., 2017b, 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory: Applied Geophysics, 14(2), 279–290.Google Scholar
  32. Wang, K., and Tan, H., 2017c, Research on the forward modeling of controlled-source audio-frequency magnetotellurics in three-dimensional axial anisotropic media: Journal of Applied Geophysics, 146, 27–36.Google Scholar
  33. Wannamaker, P. E., 1997, Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part II: Implications for CSAMT methodology: Geophysics, 62(2), 466–476.Google Scholar
  34. Weng, A. H., Liu, Y. H., Jia, D. Y., et al., 2012, Threedimensional controlled source electromagnetic inversion using non-linear conjugate gradients: Chinese J. Geophys. (in Chinese), 55(10), 3506–3515.Google Scholar
  35. Yang, B., Xu, Y. X., He, Z. X., et al., 2012, 3D frequencydomain modeling of marine controlled-source electromagnetic responses with topography using finite volume method: Chinese J. Geophys. (in Chinese), 55(4), 1390–1399.Google Scholar
  36. Younis, A., El-Qady, G., Alla, M. A., et al., 2015, AMT and CSAMT methods for hydrocarbon exploration at Nile Delta, Egypt: Arabian Journal of Geosciences, 8(4), 1965–1975.Google Scholar
  37. Zhou, J., Wang, J., Shang, Q., Wang, H., and Yin, C., 2014, Regularized inversion of controlled source audiofrequency Magnetotelluric data in horizontally layered transversely isotropic media: Journal of Geophysics & Engineering, 11(2), 25003–25014.Google Scholar
  38. Zonge, K. L., and Hughes, L. J., 1991, Controlled source audio-frequency magnetotellurics, in Nabighian M. N. Eds., Electromagnetic methods in applied geophysics: Society of Exploration Geophysicists Press, USA, 713–810.Google Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Electromagnetic Radiation and Sensing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.College of GeophysicsChengdu University of TechnologyChengduChina
  3. 3.School of Geophysics and information TechnologyChina University of Geosciences (Beijing)BeijingChina
  4. 4.Key Laboratory of Geo-detection (China University of Geosciences)Ministry of EducationBeijingChina

Personalised recommendations