Advertisement

Applied Geophysics

, Volume 14, Issue 3, pp 449–458 | Cite as

Field testing of the surface electromagnetic prospecting system

  • Qing-Yun Di
  • Chang-Min Fu
  • Zhi-Guo An
  • Cheng Xu
  • Ya-Lu Wang
  • Zhong-Xing Wang
Instrument development

Abstract

To test the performance of the Chinese whole-surface electromagnetic prospecting (SEP) system, system integrations, instrument performances, and large-scale production viabilities in Liaoning province and Inner Mongolia were measured via extensive field tests. Resultant electric fields, magnetic fields, apparent resistivities, impedance phases, and inversion profiles compared favorably with results of commercial equipment from other countries. The inversion results agreed well with the geologic information from boreholes. Field tests showed that the SEP system is stable, reliable, lightweight, and easy to operate, making it suitable and ready for real-field exploration.

Keywords

ground electromagnetic instrument electromagnetic sounding system SEP CSAMT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank the staff of the SEP research group for their contributions toward the development and testing of the SEP system.

References

  1. Bastani, M., Malehmir, A., and Ismail, N., 2009, Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods: A case study from northeast Iran: Geophysics, 74(5), B167–B181.CrossRefGoogle Scholar
  2. Chen, K., Wei, W. B., Deng, M., et al., 2015, A new magnetotelluric receiver: Geophysical and Geochemical Exploration, 39(4), 780–785.Google Scholar
  3. Constable, S., Orange, A. S., Hoversten, G. M., et al., 1998, Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system: Geophysics, 63(3), 816–825.CrossRefGoogle Scholar
  4. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration: Geophysics, 75(5), A67–A81.CrossRefGoogle Scholar
  5. Di, Q. Y., Fang, G. Y., and Zhang, Y. M., 2013, Research of the surface electromagnetic prospecting (SEP) system: Chinese Journal Geophysics, 56(11), 3629–3639Google Scholar
  6. Grayver, A.V., Streich, R., Ritter, O., 2014, 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation: Geophysics, 79(2), E101–E114.CrossRefGoogle Scholar
  7. He, J. S., 1998. Development and prospect of electrical prospecting method: Journal of Geophysics (in Chinese), 40(S1), 308–316.Google Scholar
  8. He, Z. X., Kurt, S., Yu, G., and Wang, Z. G., 2008, On reservoir boundary detection with marine CSEM: Applied Geophysics, 5(3), 181–188CrossRefGoogle Scholar
  9. Ichiki, M., Ogawa, Y., Kaida, T., et al., 2015, Electrical image of subduction zone beneath northeastern Japan: Journal of Geophysical Research-Solid Earth, 120(12), 7937–7965CrossRefGoogle Scholar
  10. Korja, T., Smirnov, M., Pedersen, L. B., et al., 2008, Structure of the central scandinavian caledonides and the underlying precambrian basement, new constraints from magnetotellurics: Geophysical Journal International, 175, 55–69CrossRefGoogle Scholar
  11. Lin, P. R., Zheng, C. J., Shi, F. S., et al., 2006, The Research of Integrated Electromagnetic Method System: Acta Geologica Sinica, 80(10), 1539–1548.Google Scholar
  12. Nagighian, M. N., and Macnae, J. C., 1991, In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. M. N. Nabighian. Tulsa: Society of Exploration Geophysicists, 427–520.Google Scholar
  13. Patro, P. K., and Egbert, G. D., 2011, Application of 3D inversion to magnetotelluric profile data from the Deccan Volcanic Province of Western India: Physics of the Earth and Planetary Interiors, 187, 33–46.CrossRefGoogle Scholar
  14. Rees, N., Carter, S., and Heinson, G., 2016, Bayesian inversion of CSEM and magnetotelluric data: Geophysics, 77(1), E33–E42.Google Scholar
  15. Routh, P. S., and Oldenburg, D. W., 1999, Inversion of controlled-source audio-frequency magnetoteluric data for a horizontal-layered earth: Geophysics, 1999, 64(6), 1689–1697.Google Scholar
  16. Roy, K. K., Verma, S. K., Mallick, K., 1999, Deep electromagnetic exploration: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  17. Singh, A., and Sharma, S. P., 2015, Fast imaging of subsurface conductors using very low-frequency electromagnetic data: Geophysical Prospecting, 63(6), 1355–1370.CrossRefGoogle Scholar
  18. Singh, A., and Sharma, S. P., 2015, Fast imaging of subsurface conductors using very low-frequency electromagnetic data: Geophysical Prospecting, 63(6), 1355–1370.CrossRefGoogle Scholar
  19. Tang, J. T., Ren, Z. R., Zhou, C., et al., 2015, Frequencydomain electromagnetic methods for exploration of the shallow subsurface: A review: Chinese Journal Geophysics, 58(8), 2681–2705.Google Scholar
  20. Teng, J. W., 2010, Strengthing exploration of metallic minerals in the second depth space of the crust, Accelerating development and industrialization of new geophysical technology and instrumental equipment: Progress in Geophysics (in Chinese), 25(3), 729–748.Google Scholar
  21. Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005, Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data: Nature, 438(7064), 78–81.CrossRefGoogle Scholar
  22. Zhdanov, M. S., 2015, Inverse theory and applications in geophysics: Elsevier, Amsterdam, 615–645.Google Scholar
  23. Zonge, K. L., and Hughes, L. H., 1991, Controlled-source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. M. N. Nabighian. Tulsa: Society of Exploration Geophysicists, 713–809.CrossRefGoogle Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qing-Yun Di
    • 1
  • Chang-Min Fu
    • 1
  • Zhi-Guo An
    • 1
  • Cheng Xu
    • 1
  • Ya-Lu Wang
    • 1
  • Zhong-Xing Wang
    • 1
  1. 1.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations