Skip to main content
Log in

Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38°C/10yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerly D D, Loarie S R, Cornwell W K et al., 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16(3): 476–487. doi: 10.1111/j.1472-4642.2010.00654.x

    Article  Google Scholar 

  • Alexander L V, Zhang X, Peterson T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5): D05109. doi: 10.1029/2005JD006290

    Article  Google Scholar 

  • Bahn M, Körner C, 2003. Recent increases in summit flora caused by warming in the Alps. In: Nagy L et al. (eds). Alpine Biodiversity in Europe. Berlin: Springer, 437–441. doi: 10.1007/978-3-642-18967-8_27

    Chapter  Google Scholar 

  • Beckage B, Osborne B, Gavin D G et al., 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Science of the United States of America, 105(11): 4197–4202. doi: 10.1073/pnas.0708921105

    Article  Google Scholar 

  • Bjorkman A D, Elmendorf S C, Beamish A L et al., 2015. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 21(12): 4651–4661. doi: 10.1111/gcb.1305163

    Article  Google Scholar 

  • Britton A J, Beale C M, Towers W et al., 2009. Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation, 142(18): 1728–1739. doi: 10.1016/j.biocon.2009.03.010

    Article  Google Scholar 

  • Bruun H H, Moen J, Virtanen R et al., 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17(1): 37–46. doi: 10.1111/j.1654-1103. 2006.tb02421.x

    Article  Google Scholar 

  • Callaway R M, Brooker R W, Choler P et al., 2002. Positive interactions among alpine plants increase with stress. Nature, 417(6891): 844–848. doi: 10.1038/nature00812

    Article  Google Scholar 

  • Colwell R K, Hurtt G C, 1994. Nonbiological gradients in species richness and a spurious rapoport effect. The American Naturalist, 144(4): 570–595. doi: 10.1086/285695

    Article  Google Scholar 

  • Dai L M, Wu G, Zhao J Z et al., 2002. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Science in China Series D: Earth Sciences, 45(10): 903–910. doi: 10.1360/02yd9089

    Article  Google Scholar 

  • Danby R K, Hik D S, 2007. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology, 95(2): 352–363. doi: 10.1111/j.1365-2745.2006.01200.x

    Article  Google Scholar 

  • Danby R K, Koh S, Hik D S et al., 2011. Four decades of plant community change in the alpine tundra of Southwest Yukon, Canada. AMBIO, 40(6): 660–671. doi: 10.1007/s13280-011-0172-2

    Article  Google Scholar 

  • DeChaine E G, Martin A P, 2004. Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution, 58(1): 113–127. doi: 10.1111/j.0014-3820.2004.tb01578.x

    Article  Google Scholar 

  • Diaz H F, Eischeid J K, 2007. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophysical Research Letters, 34(18): L18707. doi: 10.1029/2007GL031253

    Article  Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G, 2003. A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30(3): 401–417. doi: 10.1046/j.1365-2699.2003.00839.x

    Article  Google Scholar 

  • Engler R, Randin C F, Thuiller W et al., 2011. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17(7): 2330–2341. doi: 10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  • Erschbamer B, Kiebacher T, Mallaun M et al., 2009. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecology, 202(1): 79–89. doi: 10.1007/s11258-008-9556-1

    Article  Google Scholar 

  • Erschbamer B, Unterluggauer P, Winkler E et al., 2011. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia, 83(3): 387–401.

    Google Scholar 

  • Frei E, Bodin J, Walther G R, 2010. Plant species’ range shifts in mountainous areas—All uphill from here? Botanica Helvetica, 120(2): 117–128. doi: 10.1007/s00035-010-0076-y

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A et al., 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2): 111–115. doi: 10.1038/nclimate1329

    Article  Google Scholar 

  • Gough L, Shaver G R, Carroll J et al., 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. Journal of Ecology, 88(1): 54–66. doi: 10.1046/j.1365-2745.2000.00426.x

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H, 1994. Climate effects on mountain plants. Nature, 369(6480): 448. doi: 10.1038/369448a0

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Gruber A et al., 1995. Patterns and current changes in alpine plant diversity. In: Chapin III F S and Körner C (eds). Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Berlin: Springer, 167–181. doi: 10.1007/978-3-642-78966-3_12

    Google Scholar 

  • Grime J P, 1973a. Competitive exclusion in herbaceous vegetation. Nature, 242(5396): 344–347. doi: 10.1038/242344a0

    Article  Google Scholar 

  • Grime J P, 1973b. Control of species density in herbaceous vegetation. Journal of Environmental Management, 1: 151–167.

    Google Scholar 

  • Grime J P, 1979. Ecological classification. Science, 206(22): 1176–1177. doi: 10.1126/science.206.4423.1176

    Google Scholar 

  • Grime J P, 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86(6): 902–910. doi: 10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  • Grytnes J A, 2003. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26(3): 291–300. doi: 10.1034/j.1600-0587.2003.03358.x

    Article  Google Scholar 

  • Heikkinen R K, Neuvonen S, 1997. Species richness of vascular plantsin the subarctic landscape of northern Finland: modelling relationships to the environment. Biodiversity and Conservation, 6(9): 1181–1201. doi: 10.1023/A:1018356823171

    Article  Google Scholar 

  • Henry G H R, Molau U, 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology, 3(S1): 1–9. doi: 10.1111/j.1365-2486.1997.gcb132.x

    Article  Google Scholar 

  • Holzinger B, Hülber K, Camenisch M et al., 2008. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecology, 195(2): 179–196. doi: 10.1007/s11258-007-9314-9

    Article  Google Scholar 

  • Huang Xichou, Li Chonghao, 1984. An analysis on the ecology of alpine tundra landscape of Changbai Mountains. Acta Geographica Sinica, 39(3): 285–297. (in Chinese)

    Google Scholar 

  • Huelber K, Gottfried M, Pauli H et al., 2006. Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. Arctic, Antarctic, and Alpine Research, 38(1): 99–103. doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2

    Article  Google Scholar 

  • Hughes L, 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15(2): 56–61. doi: 10.1016/S0169-5347(99)01764-4

    Article  Google Scholar 

  • Inouye D W, 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2): 353–362. doi: 10.1890/06-2128.1

    Article  Google Scholar 

  • IPCC, 2007. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jin Yinghua, Xu Jiawei, Liang Yu et al., 2013. Effects of volcanic interference on the vegetation distribution of Changbai Mountain. Scientia Geographica Sinica, 33(2): 203–208. (in Chinese)

    Google Scholar 

  • Jin Yinghua, Xu Jiawei, Liu Lina et al., 2016. Spatial distribution pattern and associations of dominant plant species in the alpine tundra of the Changbai Mountains. Scientia Geographica Sinica, 36(8): 1212–1218. (in Chinese)

    Google Scholar 

  • Jin Yinghua, Xu Jiawei, Wang Shaoxian et al., 2017. Distribution variations of dominant plant species in degraded shrub tundra on the western slope of the Changbai Mountains. Acta Ecologica Sinica, 37(11): 3716–3723. (in Chinese)

    Google Scholar 

  • Kazakis G, Ghosn D, Vogiatzakis I N et al., 2007. Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodiversity and Conservation, 16(6): 1603–1615. doi: 10.1007/s10531-006-9021-1

    Article  Google Scholar 

  • Kelly A E, Goulden M L, 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(33): 11823–11826. doi: 10.1073/pnas.0802891105

    Article  Google Scholar 

  • Kessler M, 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149(2): 181–93. doi: 10.1023/A:1026500710274

    Article  Google Scholar 

  • Klanderud K, Birks H J B, 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene, 13(1): 1–6. doi: 10.1191/0959683603hl589ft

    Article  Google Scholar 

  • Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4): 445–459. doi: 10.1007/s004420050540

    Article  Google Scholar 

  • Körner C, 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology and Evolution, 15(12): 513–514. doi: 10.1016/S0169-5347(00)02004-8

    Article  Google Scholar 

  • Körner C, Paulsen J, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713–732. doi: 10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  • Lesica P, McCune B, 2004. Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. Journal of Vegetation Science, 15(5): 679–690. doi: 10.1111/j.1654-1103.2004.tb02310.x

    Article  Google Scholar 

  • Lomolino M V, 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10(1): 3–13. doi: 10.1046/j.1466-822x.2001.00229.x

    Article  Google Scholar 

  • McDougall K L, Morgan J W, Walsh N G et al., 2005. Plant invasions in treeless vegetation of the Australian Alps. Perspectives in Plant Ecology, Evolution and Systematics, 7(3): 159–171. doi: 10.1016/j.ppees.2005.09.001

    Article  Google Scholar 

  • Meng Xianxi, 1982. The alpine tundra soil on the Changbai Mountain of China. Scientia Geographica Sinica, 2(1): 57–64. (in Chinese)

    Google Scholar 

  • Mitchell M G E, Cahill J F, Hik D S, 2009. Plant interactions are unimportant in a subarctic-alpine plant community. Ecology, 90(9): 2360–2367. doi: 10.1890/08-0924.1

    Article  Google Scholar 

  • Moser D, Dullinger S, Englisch T et al., 2005. Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32(7): 1117–1127. doi: 10. 1111/j.1365-2699.2005.01265.x

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H, 1974. Aims and Methods of Vegetation Ecology. New York: John Wiley and Sons

    Google Scholar 

  • Myers-Smith I H, Forbes B C, Wilmking M et al., 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4): 045509. doi: 10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  • Odland A, Birks H J B, 1999. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography, 22(5): 548–566. doi: 10.1111/j.1600-0587.1999.tb01285.x

    Article  Google Scholar 

  • Odland A, Høitomt T, Olsen S L, 2010. Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arctic, Antarctic, and Alpine Research, 42(4): 458–470. doi: 10.1657/1938-4246-42.4.458

    Article  Google Scholar 

  • Oommen M A, Shanker K, 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86(11): 3039–47. doi: 10.1890/04-1837

    Article  Google Scholar 

  • Parmesan C, Yohe G, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42. doi: 10.1038/nature01286

    Article  Google Scholar 

  • Parolo G, Rossi G, 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology, 9(2): 100–107. doi: 10.1016/j.baae.2007.01.005

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al., 2012. Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079): 353–355. doi: 10.1126/science.1219033

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dirnböck T et al., 2003. Assessing the long-term dynamics of endemic plants at summit habitats. In: Nagy L et al. (eds). Alpine Biodiversity in Europe. Berlin: Springer, 195–207. doi: 10.1007/978-3-642-18967-8_9

    Chapter  Google Scholar 

  • Pauli H, Gottfried M, Reiter K et al., 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13(1): 147–156. doi: 10.1111/j.1365-2486.2006.01282.x

    Article  Google Scholar 

  • Qian Jiaju, Zhang Wenzhong, 1980. A brief report on the research of the Changbaishan alpine tundra vegetation. Journal of Northeast Normal University (Natural Science Edition), (1): 51–67. (in Chinese)

    Google Scholar 

  • Qian Hong, 1990. Numerical classification and ordination of plant communities in the alpine tundra of Mt. Changbai. Journal of Applied Ecology, 1(3): 254–263. (in Chinese)

    Google Scholar 

  • Rahbek C, 1995. The elevational gradient of species richness—A uniform pattern. Ecography, 18(2): 200–205. doi: 10.1111/j.1600-0587.1995.tb00341.x

    Article  Google Scholar 

  • Ricklefs R E, 1989. Speciation and diversity: the integration of local and regional processes. In: Otte D and Endler J A (eds). Speciation and Its Consequences. Sunderland, MA, USA: Sinauer, 599–622.

    Google Scholar 

  • Sammul M, Kull K, Oksanen L et al., 2000. Competition intensity and its importance: results of field experiments with Anthoxanthum odoratum. Oecologia, 125(1): 18–25. doi: 10. 1007/PL00008887

    Article  Google Scholar 

  • Scherrer D, Körner C, 2011. Topographically controlled thermal- habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38(2): 406–416. doi: 10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Shimono A, Zhou H K, Shen H H et al., 2010. Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. Journal of Plant Ecology, 3(1): 1–7. doi: 10.1093/jpe/rtq002

    Article  Google Scholar 

  • Stanisci A, Pelino G, Blasi C, 2005. Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodiversity and Conservation, 14(6): 1301–1318. doi: 10.1007/s10531-004-9674-6

    Article  Google Scholar 

  • Symon C, Arris L, Heal B, 2005. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Theurillat J P, Guisan A, 2001. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change, 50(1–2): 77–109. doi: 10.1023/A:1010632015572

    Article  Google Scholar 

  • Thuiller W, Richardson D M. Midgley G F, 2006. Will climate change promote alien plant invasions? In: Nentwig W (ed). Biological Invasions. Berlin, Heidelberg: Springer, 193: 197–211. doi: 10.1007/978-3-540-36920-2_12

    Article  Google Scholar 

  • Vittoz P, Rulence B, Largey T et al., 2008. Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1): 225–232. doi: 10.1657/1523-0430(06-010)[VITTOZ]2.0.CO;2

    Article  Google Scholar 

  • von Haller A, 1742. Enumeratio Methodica Stirpium Helvetiae Indigenarum. Gottingae, DE: A Vanderhoek.

    Google Scholar 

  • Walther G R, 2003. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 6(3): 169–185. doi: 10.1078/1433-8319-00076

    Article  Google Scholar 

  • Walther G R, Beißner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 542–548. doi: 10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  • Wang X L, Feng Y, 2013. RHtestsV4 User Manual. Toronto, Ontario, Canada: Climate Research Division, Science and Technology Branch, Environment Canada. http://etccdi.pacificclimate.org/software.shtml.

    Google Scholar 

  • Wei J, Jiang P, Yu D Y et al., 2007. Distribution patterns of vegetation biomass and nutrients bio-cycle in alpine tundra ecosystem on Changbai Mountains, Northeast China. Journal of Forestry Research, 18(4): 271–278. doi: 10.1007/S11676-007-0055-3

    Article  Google Scholar 

  • Xu Jiawei, Zhang Feihu, 2010. Several main questions of physical geography research of Changbai Mountains. In Wang Yeqiao et al. (eds.). Geosystems and ecological security of the Changbai Mountainss: IV. Changchun: Northeast Normal University Press, 266–274. (in Chinese)

    Google Scholar 

  • Yang Meihua, 1981. The climatic features of Changbaishan and its vertical climatic zone on the northern slop. Acta Meteorologica Sinica, 39(3): 57–66. (in Chinese)

    Google Scholar 

  • Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013. Investigation and mechanism analysis on the invasion of Deyeuxia. angustifolia to tundra zone in western slope of Changbai Mountain. Journal of Mountain Science, 31(4): 448–455. (in Chinese)

    Google Scholar 

  • Zong Shengwei, Xu Jiawei, Wu Zhengfang et al., 2014. Analysis of the process and impacts of Deyeuxia angustifolia invasion on the Alpine Tundra, Changbai Mountain. Acta Ecologica Sinica, 34(23): 6837–6846. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Xu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41571078, 41171072), Open Foundation of Changbai Scientific Research Academy (No. 201501)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Zhang, Y., Xu, J. et al. Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming. Chin. Geogr. Sci. 28, 665–679 (2018). https://doi.org/10.1007/s11769-018-0978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0978-y

Keywords

Navigation