Skip to main content
Log in

Regenerative Role of Soil Seed Banks of Different Successional Stages in A Saline-alkaline Grassland in Northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristics of soil seed banks and the potential of soil seed banks of different successional stages for vegetation restoration. In this study, seasonal changes of the soil seed bank, and seed production and dispersal dynamics along degradation successional gradients were investigated in a saline-alkaline grassland in Northeast China, where the dominant grass during the 1960s, Leymus chinensis was replaced with the secondary successional order of Puccinellia chinampoensis, Chloris virgata, and Suaeda salsa, together with bare patches. It was found that the soil seed bank composition varied according to the changing vegetation and had the highest species richness (7–16) in the climax successional stage, but had a low Sørensen similarity (0.22–0.37) with the aboveground vegetation. There was a high seed density of the soil seed bank (21 062–62 166/m2 in August and December) and also high Sørensen similarity index values (0.47–0.60) in the secondary successional stages of P. chinampoensis, C. virgata, and S. salsa. In bare patches, there were many seeds in the soil seed bank and some seedlings also appeared in the aboveground vegetation, indicating the existence of a persistent soil seed bank. Seed density and species richness differed substantially among the different successional stages, which was related to the reproductive characteristics of the standing plants in vegetation communities. Due to the lack of propagules of perennial species, especially the climax species of L. chinensis, in the soil, the successful restoration of the degraded saline-alkaline grassland was not possible. The study proved that in a degraded saline-alkaline grassland dominated by biennial or annual species, the soil seed bank was important for the revegetation of the current dominant plants, but not for the restoration of the original target species. Therefore, it is necessary to induce seeds or other propagules of the target perennial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguado M, Vicente M J, Miralles J et al., 2012. Aerial seed bank and dispersal traits in Anthemis chrysantha (Asteraceae), a critically endangered species. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(4): 275–282. doi: 10.1016/ j.flora.2012.02.002

    Article  Google Scholar 

  • Asadi H, Hosseini S M, Esmailzadeh O et al., 2012. Persistent soil seed banks in old-growth hyrcanian box tree (Buxus hyrcana) stands in northern Iran. Ecological Research, 27(1): 23–33. doi: 10.1007/s11284-011-0865-9

    Article  Google Scholar 

  • Bai J H, Huang L B, Gao Z Q et al., 2014. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments. Journal of Hazardous Materials, 280: 295–303. doi: 10.1016/j.jhazmat.2014. 07.070

    Article  Google Scholar 

  • Bai W J, Mitchley J, Jiao J Y, 2010. Soil seed bank and standing vegetation of abandoned croplands on Chinese Loess Plateau: implications for restoration. Arid Land Research and Management, 24(2): 98–116. doi: 10.1080/15324981003635461

    Article  Google Scholar 

  • Bakker J P, Bakker E S, Rosén E et al., 1996. Soil seed bank composition along a gradient from dry alvar grassland to Juniperus shrubland. Journal of Vegetation Science, 7(2): 165–176. doi: 10.2307/3236316

    Article  Google Scholar 

  • Baskin C C, Baskin J M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.

    Google Scholar 

  • Bekker R M, Verweij G L, Bakker J P et al., 2000. Soil seed bank dynamics in hayfield succession. Journal of Ecology, 88(4): 594–607. doi: 10.1046/j.1365-2745.2000.00485.x

    Article  Google Scholar 

  • Blomqvist M M, Tamis W L M, Bakker J P et al., 2006. Seed and (micro)site limitation in ditch banks: germination, establishment and survival under different management regimes. Journal for Nature Conservation, 14(1): 16–33. doi: 10.1016/j.jnc.2005.08.003

    Article  Google Scholar 

  • Bonvissuto G L, Busso C A, 2007. Seed rain in and between vegetation patches in Arid Patagonia, Argentina (with 1 Table amp; 4 Figures). Phyton (Buenos Aires), 76: 47–59.

    Google Scholar 

  • Bossuyt B, Hermy M, 2001. Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography, 24(2): 225–238. doi: 10.1034/j.1600-0587.2001.240213.x

    Article  Google Scholar 

  • Busso C A, Bonvissuto G L, 2009. Soil seed bank in and between vegetation patches in arid Patagonia, Argentina. Environmental and Experimental Botany, 67(1): 188–195. doi: 10.1016/j.envexpbot.2009.01.003

    Article  Google Scholar 

  • DeFalco L A, Esque T C, Kane J M et al., 2009. Seed banks in a degraded desert shrubland: influence of soil surface condition and harvester ant activity on seed abundance. Journal of Arid Environments, 73(10): 885–893. doi: 10.1016/j.jaridenv.2009. 04.017

    Article  Google Scholar 

  • Deng Wei, Qiu Shanwen, Liang Zhengwei, 2006. Background of Regional Eco-environment in Da’an Sodic Land Experiment Station of China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Du X J, Guo Q F, Gao X M et al., 2007. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest. Forest Ecology and Management, 238(1–3): 212–219. doi: 10.1016/j.foreco.2006.10.018

    Article  Google Scholar 

  • Erfanzadeh R, Hendrickx F, Maelfait J P et al., 2010. The effect of successional stage and salinity on the vertical distribution of seeds in salt marsh soils. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(7): 442–448. doi: 10.1016/j.flora.2009.12.010

    Article  Google Scholar 

  • Esmailzadeh O, Hosseini S M, Tabari M et al., 2011. Persistent soil seed banks and floristic diversity in Fagus orientalis forest communities in the Hyrcanian vegetation region of Iran. Flora-Morphology, Distribution, Functional Ecology of Plants, 206(4): 365–372. doi:10.1016/j.flora.2010.04.024

    Article  Google Scholar 

  • Fagan K C, Pywell R F, Bullock J M et al., 2010. The seed banks of English lowland calcareous grasslands along a restoration chronosequence. Plant Ecology, 208(2): 199–211. doi: 10.1007/s11258-009-9698-9

    Article  Google Scholar 

  • Falahati-Anbaran M, Lundemo S, Ågren J et al., 2011. Genetic consequences of seed banks in the perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae). American Journal of Botany, 98(9): 1475–1485. doi: 10.3732/ajb.1100021

    Article  Google Scholar 

  • Falinska K, 1999. Seed bank dynamics in abandoned meadows during a 20-year period in the bialowieza national park. Journal of Ecology, 87(3): 461–475. doi: 10.1046/j.1365-2745.1999.00364.x

    Article  Google Scholar 

  • Figueroa J A, Teillier S, Jaksic F M, 2004. Composition, size and dynamics of the seed bank in a Mediterranean shrubland of Chile. Austral Ecology, 29(5): 574–584. doi: 10.1111/j.1442-9993.2004.01392.x

    Article  Google Scholar 

  • Ge X L, Wang R Q, Zhang Y R et al., 2013. The soil seed banks of typical communities in wetlands converted from farmlands by different restoration methods in Nansi Lake, China. Ecological Engineering, 60: 108–115. doi: 10.1016/j.ecoleng.2013.07.044

    Article  Google Scholar 

  • Ghorbani J, Le Duc M G, McAllister H A et al., 2007. Temporal responses of propagule banks during ecological restoration in the United Kingdom. Restoration Ecology, 15(1): 103–117. doi: 10.1111/j.1526-100X.2006.00195.x

    Article  Google Scholar 

  • González-Rivas B, Tigabu M, Castro-Marín G et al., 2009. Soil seed bank assembly following secondary succession on abandoned agricultural fields in nicaragua. Journal of Forestry Research, 20(4): 349–354. doi: 10.1007/s11676-009-0059-2

    Article  Google Scholar 

  • Hanin N, Quaye M, Westberg E et al., 2013. Soil seed bank and among-years genetic diversity in arid populations of Eruca sativa Miller (Brassicaceae). Journal of Arid Environments, 91: 151–154. doi: 10.1016/j.jaridenv.2013.01.004

    Article  Google Scholar 

  • Hong J M, Liu S, Shi G P et al., 2012. Soil seed bank techniques for restoring wetland vegetation diversity in Yeyahu Wetland, Beijing. Ecological Engineering, 42: 192–202. doi: 10.1016/j.ecoleng.2012.01.004

    Article  Google Scholar 

  • Hopfensperger K N, 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos, 116(9): 1438–1448. doi: 10.1111/j.0030-1299.2007.15818.x

    Article  Google Scholar 

  • Jacquemyn H, Van Mechelen G, Brys R et al., 2011. Management effects on the vegetation and soil seed bank of calcareous grasslands: an 11-year experiment. Biological Conservation, 144(1): 416–422. doi: 10.1016/j.biocon.2010.09.020

    Article  Google Scholar 

  • Jiang S C, He N P, Wu L et al., 2010. Vegetation restoration of secondary bare saline-alkali patches in the Songnen Plain, China. Applied Vegetation Science, 13(1): 47–55. doi: 10.1111/j.1654-109X.2009.01048.x

    Article  Google Scholar 

  • Kalamees R, Zobel M, 2002. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology, 83(4): 1017–1025. doi: 10.2307/3071910

    Article  Google Scholar 

  • Koch M A, Scheriau C, Schupfner M et al., 2011. Long-term monitoring of the restoration and development of limestone grasslands in north western Germany: vegetation screening and soil seed bank analysis. Flora-Morphology, Distribution, Functional Ecology of Plants, 206(1): 52–65. doi: 10.1016/j.flora.2010.01.010

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M et al., 2010. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5): 597–605. doi: 10.1111/j.1461-0248.2010.01457.x

    Article  Google Scholar 

  • Leck M A, Schütz W, 2005. Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspectives in Plant Ecology, Evolution and Systematics, 7(2): 95–133. doi: 10.1016/j.ppees.2005.05.001

    Article  Google Scholar 

  • Legendre P, Legendre L, 1998. Numerical Ecology. 2nd ed. Amsterdam: Elsevier.

    Google Scholar 

  • Li Chonghao, Zheng Xuanfeng, 1993. The improvement of alkaline meadow by accumulative sand by wind in the Songnen Plain. Chinese Geographical Science, 3(2): 159–162. doi: 10.1007/BF02664556

    Article  Google Scholar 

  • Li Y Y, Dong S K, Wen L et al., 2012. Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau. Ecological Engineering, 49: 77–83. doi: 10.1016/j.ecoleng.2012.08.022

    Article  Google Scholar 

  • Liu Xingtu, 2001. Management on Degraded Land and Agricultural Development in the Songnen Plain. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Liu Z, Yan Q, Liu B et al., 2007. Persistent soil seed bank in Agriophyllum squarrosum (Chenopodiaceae) in a deep sand profile: variation along a transect of an active sand dune. Journal of Arid Environments, 71(2): 236–242. doi: 10.1016/j. jaridenv.2007.03.003

    Article  Google Scholar 

  • Luo H, Wang K Q, 2006. Soil seed bank and aboveground vegetation within hillslope vegetation restoration sites in Jinshajing hot-dry river valley. Acta Ecologica Sinica, 26(8): 2432–2442. doi: 10.1016/S1872-2032(06)60038-3

    Article  Google Scholar 

  • Luzuriaga A L, Escudero A, Olano J M et al., 2005. Regenerative role of seed banks following an intense soil disturbance. Acta Oecologica, 27(1): 57–66. doi: 10.1016/j.actao.2004.09.003

    Article  Google Scholar 

  • Ma Hongyuan, Lü Bingsheng, Yang Haoyu et al., 2010a. Responses of seed germination of Leymus chinensis to environmental factors in degraded grassland on Songnen Plain in China. Chinese Journal of Plant Ecology, 36(8): 812–818. (in Chinese)

    Article  Google Scholar 

  • Ma H Y, Yang H Y, Lü X T et al., 2015. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Plant and Soil, 394(1–2): 35–43. doi: 10.1007/s11104-015-2487-4

    Article  Google Scholar 

  • Ma M J, Zhou X H, Du G Z, 2010b. Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(2): 128–134. doi: 10.1016/j.flora.2009.02.006

    Article  Google Scholar 

  • Martins A M, Engel V L, 2007. Soil seed banks in tropical forest fragments with different disturbance histories in southeastern Brazil. Ecological Engineering, 31(3): 165–174. doi: 10.1016/j.ecoleng.2007.05.008

    Article  Google Scholar 

  • Matus G, Papp M, Tóthmérész B, 2005. Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora-Morphology, Distribution, Functional Ecology of Plants, 200(3): 296–306. doi: 10.1016/j.flora.2004.12.002

    Article  Google Scholar 

  • Miao S L, Zou C B, 2009. Seasonal variation in seed bank composition and its interaction with nutrient enrichment in the Everglades wetlands. Aquatic Botany, 90(2): 157–164. doi: 10.1016/j.aquabot.2008.08.006

    Article  Google Scholar 

  • Milberg P, Hansson M L, 1994. Soil seed bank and species turnover in a limestone grassland. Journal of Vegetation Science, 5(1): 35–42. doi: 10.2307/3235635

    Article  Google Scholar 

  • Ooi M K J, Auld T D, Denham A J, 2012. Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant and Soil, 353(1–2): 289–303. doi: 10.1007/s11104-011-1032-3

    Article  Google Scholar 

  • Osem Y, Perevolotsky A, Kigel J, 2006. Similarity between seed bank and vegetation in a semi-arid annual plant community: the role of productivity and grazing. Journal of Vegetation Science, 17(1): 29–36. doi: 10.1111/j.1654-1103.2006.tb02420.x

    Article  Google Scholar 

  • Panta S, Flowers T, Lane P et al., 2014. Halophyte agriculture: success stories. Environmental and Experimental Botany, 107: 71–83. doi: 10.1016/j.envexpbot.2014.05.006

    Article  Google Scholar 

  • Pekas K M, Schupp E W, 2013. Influence of aboveground vegetation on seed bank composition and distribution in a Great Basin Desert sagebrush community. Journal of Arid Environments, 88: 113–120. doi: 10.1016/j.jaridenv.2012.08.013

    Article  Google Scholar 

  • Rosenthal G, 2006. Restoration of wet grasslands–effects of seed dispersal, persistence and abundance on plant species recruitment. Basic and Applied Ecology, 7(5): 409–421. doi: 10.1016/j.baae.2006.05.006

    Article  Google Scholar 

  • Schmiede R, Donath T W, Otte A, 2009. Seed bank development after the restoration of alluvial grassland via transfer of seed-containing plant material. Biological Conservation, 142(2): 404–413. doi: 10.1016/j.biocon.2008.11.001

    Article  Google Scholar 

  • Shaukat S S, Siddiqui I A, 2004. Spatial pattern analysis of seeds of an arable soil seed bank and its relationship with above-ground vegetation in an arid region. Journal of Arid Environments, 57(3): 311–327. doi: 10.1016/S0140-1963(03)00112-5

    Article  Google Scholar 

  • Thompson K, Band S R, Hodgson J G, 1993. Seed size and shape predict persistence in soil. Functional Ecology, 7(2): 236–241. doi: 10.2307/2389893

    Article  Google Scholar 

  • Walck J L, Baskin J M, Baskin C C et al., 2005. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research, 15(3): 189–196. doi: 10.1079/SSR2005209

    Article  Google Scholar 

  • Wang G D, Middleton B, Jiang M, 2013. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China. Restoration Ecology, 21(6): 801–808. doi: 10. 1111/rec.12015

    Article  Google Scholar 

  • Wang N, Jiao J Y, Du H D et al., 2013. The role of local species pool, soil seed bank and seedling pool in natural vegetation restoration on abandoned slope land. Ecological Engineering, 52: 28–36. doi: 10.1016/j.ecoleng.2012.12.055

    Article  Google Scholar 

  • Yang Jiuchun, Zhang Shuwen, Li Ying et al., 2010. Dynamics of saline-alkali land and its ecological regionalization in western Songnen Plain, China. Chinese Geographical Science, 20(2): 159–166. doi: 10.1007/s11769-010-0159-0

    Article  Google Scholar 

  • Zhan X, Li L, Cheng W, 2007. Restoration of Stipa kryloviisteppes in Inner Mongolia of China: assesment of seed banks and vegetation composition. Journal of Arid Environments, 68(2): 298–307. doi: 10.1016/j.jaridenv.2006.05.012

    Article  Google Scholar 

  • Zhang H, Chu L M, 2013. Changes in soil seed bank composition during early succession of rehabilitated quarries. Ecological Engineering, 55: 43–50. doi: 10.1016/j.ecoleng.2013.02.002

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professors Carol C Baskin and Jerry M Baskin (University of Kentucky), Dr. David Merritt (University of Western Australia), and Mark K J Ooi (University of New South Wales) for comments on the draft manuscript. We also thank Dr. Xue Zhenshan for drawing the map of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Ma.

Additional information

Foundation item: Under the auspices of National Basic Research Program of China (No. 2015CB150802), National Natural Science Foundation of China (No. 41371260, 41771058), National Key Research & Development Program of China (No. 2016YFC0501200), National Key Basic Survey of Resources (No. 2015FY110500)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Li, J., Yang, F. et al. Regenerative Role of Soil Seed Banks of Different Successional Stages in A Saline-alkaline Grassland in Northeast China. Chin. Geogr. Sci. 28, 694–706 (2018). https://doi.org/10.1007/s11769-018-0966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0966-2

Keywords

Navigation