Skip to main content
Log in

Characteristics of Sand Dune Pattern and Fluvial-aeolian Interaction in Horqin Sandy Land, Northeast Plain of China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing images, this study utilizes geomorphology and landscape ecology to monitor and analyze the aeolian geomorphology characteristics of the Horqin Sandy Land. Results show that the sand dunes of the Horqin Sandy Land are mainly distributed on alluvial plains along the banks of the mainstream and tributaries of the Western Liao River, and the sand dune types tend to simplify from west to east and from south to north. The aeolian geomorphology coverage tend to be decreasing in the past 40 years, with an average annual change rate of 0.31%. While the area of traveling dunes decreased, the area of fixed and semi-fixed dunes increased. The fractal dimensions of various types of sand dune have all remained relatively constant between 1.07 and 1.10, suggesting that they are experiencing a relatively stable evolutionary process. There is a complex interaction between fluvial and aeolian processes of the Horqin Sandy Land, which plays a central role in surface landscape molding. Sand dunes on both sides of different rivers on the Horqin Sandy Land present certain regularity and different characteristics in terms of morphology, developmental scale, and spatial pattern. There are six fluvial-aeolian interaction modes in this area: supply of sand sources by rivers for sand dune development, complete obstruction of dune migration by rivers, partial obstruction of dune migration by rivers, influence of river valleys on dune developmental types on both sides, influence of river valleys on dune developmental scale on both sides, and river diversion due to obstruction and forcing by sand dunes. This study deepens our understanding of the surface process mechanism of the interaction between fluvial and aeolian processes in semi-arid regions, and provides a basis for researches on regional landscape responses in the context of global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J L, Walker I J, 2006. Airflow and sand transport variations within a backshore-parabolic dune plain complex: NE Graham Island, British Columbia, Canada. Geomorphology, 77 (1–2): 17–34. doi: 10.1016/j.geomorph.2005.12.008

    Article  Google Scholar 

  • Bullard J E, McTainsh G H, 2003. Aeolian-fluvial interactions in dryland environments: examples, concepts and Australia case study. Progress in Physical Geography, 27(4): 471–501. doi: 10.1191/0309133303pp386ra

    Article  Google Scholar 

  • Bullard J E, Nash D J, 1998. Linear dune pattern variability in the vicinity of dry valleys in the southwest Kalahari. Geomorphology, 23(1): 35–54. doi: 10.1016/S0169-555X(97)00090-1

    Article  Google Scholar 

  • Bullard J E, Nash D J, 2000. Valley-marginal sand dunes in the south-west Kalahari: their nature, classification and possible origins. Journal of Arid Environments, 45(4): 369–383. doi: 10.1006/jare.2000.0646

    Article  Google Scholar 

  • Burchsted D, Daniels M, Wohl E E, 2014. Introduction to the special issue on discontinuity of fluvial systems. Geomorphology, 205(SI): 1–4. doi: 10.1016/j.geomorph.2013.04.004

    Article  Google Scholar 

  • Cai Yunlong, Song Changqing, Leng Shuying, 2009. Future development trends and priority areas of physical geography in China. Scientia Geographica Sinica, 29(5): 619–626. (in Chinese)

    Google Scholar 

  • Du Huishi, Hasi E, Yang Yi et al., 2012. Landscape pattern change and driving force of blowout distribution in the Hulun Buir Sandy Grassland. Sciences in Cold and Arid Regions, 4(5): 431–438. (in Chinese)

    Article  Google Scholar 

  • Du Huishi, Jiang Hailing, Zhang Lifu et al., 2016. Evaluation of spectral scale effects in estimation of vegetation leaf area index using spectral indices methods. Chinese Geographical Science, 26(6): 731–744. doi: 10.1007/s11769-016-0833-y

    Article  Google Scholar 

  • Duan Hanchen, Wang Tao, Xue Xian et al., 2013. Spatial-temporal evolution of aeolian desertification in the Horqin Sandy Land based on RS and GIS. Journal of Desert Research, 33(2): 470–477. (in Chinese)

    Google Scholar 

  • Duran O, Silva M V N, Bezerra L J C et al., 2008. Measurements and numerical simulations of the degree of activity and vegetation cover on parabolic dunes in north-eastern Brazil. Geomorphology, 102(3–4): 460–471. doi: 10.1016/j.geomorph.2008.05.011

    Article  Google Scholar 

  • EBGAC (The Editorial Board of Geomorphological Atlas of the People’s Republic of China), 2009. Geomorphological atlas of the People’s Republic of China (1: 1000000). Beijing: Science Press, 94–95. (in Chinese)

    Google Scholar 

  • El-Baz F, Maingue M, Robinson C, 2000. Fluvio-aeolian dynamics in the north-eastern Sahara: the relationship between fluvial/aeolian systems and ground-water concentration. Journal of Arid Environments, 44(2): 173–183. doi: 10.1006/jare.1999.0581

    Article  Google Scholar 

  • Ewing R C, Kocurek G, 2010. Aeolian dune-field pattern boundary conditions. Geomorphology, 114(3): 175–187. doi: 10.1016/j.geomorph.2009.06.015

    Article  Google Scholar 

  • Ewing R C, Kocurek G, Lake L W, 2006. Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms, 31(9): 1176–1191. doi: 10.1002/esp.1312

    Article  Google Scholar 

  • Field J P, Breshears D D, Whicker J J, 2009. Toward a more holistic perspective of soil erosion: why aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Research, 1(1–2): 917. doi: 10.1016/j.aeolia.2009.04.002

    Google Scholar 

  • Han G, Zhang G F, Dong Y X, 2007. A model for the active origin and development of source-bordering dunefields on a semiarid fluvial plain: a case study from the Xiliaohe Plain, Northeast China. Geomorphology, 86(3–4): 512–524. doi: 10.1016/j.geomorph.2006.10.010

    Article  Google Scholar 

  • Harrison Y, 1998. Late Pleistocene Aeolian and fluvial interactions in the development of the Nizzana dune field, Negev Desert, Israel. Sedimentology, 45(3): 507–518. doi: 10.1046/j.1365-3091.1998.00151.x

    Article  Google Scholar 

  • Havholm K G, Running IV G L, 2005. Stratigraphy, sedimentology, and environmental significance of late mid-Holocene dunes, Lauder Sand Hills, glacial lake Hind Basin, southwestern Manitoba. Canadian Journal of Earth Sciences, 42(5): 847–863. doi: 10.1139/e05-019

    Article  Google Scholar 

  • Hugenholtz C H, Wolfe S A, Walker I J et al., 2009. Spatial and temporal patterns of aeolian sediment transport on an inland parabolic dune, Bigstick Sand Hills, Saskatchewan, Canada. Geomorphology, 105(1–2): 158–170. doi: 10.1016/j.geomorph.2007.12.017

    Article  Google Scholar 

  • Jiang Chanwen, Dong Zhibao, Wen Qing, 2013. Extraction of dune crest lines and calculation of dune-field pattern parameters on remote sensing image based on Matlab platform. Journal of Desert Research, 33(6): 1636–1642. (in Chinese)

    Google Scholar 

  • Joanna E B, David J N, 1998. Linear dune pattern variability in the vicinity of dry valleys in the southwest Kalahari. Geomorphology, 23 (1): 35–54. doi: 10.1016/S0169-555X(97)00090-1

    Article  Google Scholar 

  • Lancaster N, 1988. Development of linear dunes in the southwestern Kalahari, southern Africa. Journal of Arid Environments, 14(3): 233–244. doi: 0000-0003-1585-5282

    Google Scholar 

  • Landsberg S Y, 1956. The orientation of dunes in Britain and Denmark in relation to wind. The Geographical Journal, 122(2): 176–189. doi: 10.2307/1790847

    Article  Google Scholar 

  • Langford R P, 1989. Fluvial-aeolian interactions: Part I, modern systems. Sedimentology, 36(6): 1023–1035. doi: 10.1111/j.1365-3091.1989.tb01540.x

    Article  Google Scholar 

  • Li Sen, Wang Yue, Ha si et al., 1997. Classification and development of aeolian sand landform in the Yurlung Zangbo Valley. Journal of Desert Research, 17(4): 342–250. (in Chinese)

    Google Scholar 

  • Liu B L, Coulthard T J, 2015. Mapping the interactions between rivers and sand dunes: Implications for fluvial and Aeolian geomorphology. Geomorphology, 231: 246–257. doi: 10.1016/j.geomorph.2014.12.011

    Article  Google Scholar 

  • Liu Hujun, Wang Jihe, Liao Kongtai et al., 2009. Type and distribution of geomorphology of aeolian sediment at region of Suosuo Vale of Kumtag Desert. Arid land geography, 32(1): 87–94. (in Chinese)

    Google Scholar 

  • Liu Yanyan, Gong Yanming, Wang Xin et al., 2013. Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees. Journal of Arid Land, 5(4): 480–487. (in Chinese)

    Article  Google Scholar 

  • Ma Yufeng, 2011. The interaction of aeolian and fluvial erosion processes in upper Yellow River. Beijing: Beijing Normal University, 40–46. (in Chinese)

    Google Scholar 

  • Marín L, Forman S L, Valdez A et al., 2005. Twentieth century dune migration at the Great Sand Dunes National Park and Preserve, Colorado, relation to drought variability. Geomorphology, 70(1–2): 163–183. doi: 10.1016/j.geomorph.2005.04.014

    Article  Google Scholar 

  • Muhs D R, Lancaster N, Skipp G L, 2017. A complex origin for the Kelso Dunes, Mojave National Preserve, California, USA: A case study using a simple geochemical method with global applications. Geomorphology, 276: 222–243. doi: 10.1016/j.geomorph.2016.10.002

    Article  Google Scholar 

  • Page K J, Dare-Edwards A J, Owens J W et al., 2001. TL chronology and stratigraphy of riverine source bordering sand dunes near Wagga Wagga, New South Wales, Australia. Quaternary International, 83–85(1): 187–193. doi: 10.1016/S1040-6182(01)00039-8

    Article  Google Scholar 

  • Seif E S S A, 2013. Assessing the engineering properties of concrete made with fine dune sands: an experimental study. Arabian Journal of Geosciences, 6(3): 857–863. doi: 10.1007/s12517-011-0376-6

    Article  Google Scholar 

  • Simpson E L, Hilbert-Wolf H L, Simpson W S et al., 2008. The interaction of aeolian and fluvial processes during deposition of the Upper Cretaceous capping sandstone member, Wahweap Formation, Kaiparowits Basin, Utah, U.S.A. Paleogeography, Paleoclimatology, Paleoecology, 270(1–2): 19–28. doi: 10.1016/j.palaeo.2008.08.009

    Article  Google Scholar 

  • Smith A B, Jackson D W T, Cooper J A G, 2017. Three–dimensional airflow and sediment transport patterns over barch dunes. Geomorphology, 278: 28–42. doi: 10.1016/j.geomorph.2016.10.025

    Article  Google Scholar 

  • Thomas D S G, Nash D J, Shaw P A et al., 1993. Present day lunette sediment cycling at Witpan in the arid southwestern Kalahari Desert. Catena, 20(5): 515–527. doi: 10.1016/0341-8162(93)90045-Q

    Article  Google Scholar 

  • Walker I J, Shugar D H, 2013. Secondary flow deflection in the lee of transverse dunes with implications for dune morphodynamics and migration. Earth surface processes and landforms, 38(14): 1642–1654. doi: 10.1002/esp.3398

    Article  Google Scholar 

  • Zuo Xiaoan, Zhao Halin, Zhao Xueyong et al., 2009. Changes on Landscape Pattern of Sand Dunes at Different Scales in Horqin Sandy Land. Journal of Desert Research, 29(5): 785–795. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongming Wang.

Additional information

Foundation item: Under the auspices of Natural National Science Foundation of China (No. 41671002, 41401002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Wang, Z. & Mao, D. Characteristics of Sand Dune Pattern and Fluvial-aeolian Interaction in Horqin Sandy Land, Northeast Plain of China. Chin. Geogr. Sci. 28, 624–635 (2018). https://doi.org/10.1007/s11769-018-0951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0951-9

Keywords

Navigation