Chinese Geographical Science

, Volume 28, Issue 2, pp 337–352 | Cite as

Iron Regulation of Wetland Vegetation Performance Through Synchronous Effects on Phosphorus Acquisition Efficiency

  • Xueying Jia
  • Zhijie Tian
  • Lei Qin
  • Linlin Zhang
  • Yuanchun Zou
  • Ming Jiang
  • Xianguo Lyu


Iron-rich groundwater flowing into wetlands is a worldwide environmental pollution phenomenon that is closely associated with the stability of wetland ecosystems. Combined with high phosphorus (P) loading from agricultural runoff, the prediction of the evolution of wetland vegetation affected by compound contamination is particularly urgent. We tested the effects of anaerobic iron-rich groundwater discharge in a freshwater marsh by simulating the effect of three levels of eutrophic water on native plants (Glyceria spiculosa (Fr. Schmidt.) Rosh.). The management of wetland vegetation with 1–20 mg/L Fe input is an efficient method to promote the growth of plants, which showed an optimum response under a 0.10 mg/L P surface water environment. Iron-rich groundwater strongly affects the changes in ecological niches of some wetland plant species and the dominant species. In addition, when the P concentration in a natural body of water is too high, the governance effect of eutrophication might not be as expected. Under iron-rich groundwater conditions, the δ13C values of organs were more depleted, which can partially explain the differences in δ13C in the soil profile. Conversely, the carbon isotope composition of soil organic carbon is indicative of past changes in vegetation. The results of our experiments confirm that iron-rich groundwater discharge has the potential to affect vegetation composition through toxicity modification in eutrophic environments.


iron-rich groundwater wetland vegetation phosphorus (P) eutrophication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Marinus Otte of North Dakota State University and Prof. Guangzhi Sun of Edith Cowan University for their constructive comments on the early version of this manuscript.


  1. Ahammed G J, Wang M M, Zhou Y H et al., 2012. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress. Ecotoxicology and Environmental Safety, 80: 132–139. doi: 10.1016/j.ecoenv.2012.02.015CrossRefGoogle Scholar
  2. Amils R, de la Fuente V, Rodríguez N et al., 2007. Composition, speciation and distribution of iron minerals in Imperata cylindrica. Plant Physiology and Biochemistry, 45(5): 335–340. doi: 10.1016/j.plaphy.2007.03.020CrossRefGoogle Scholar
  3. Aschan G, Pfanz H, Vodnik D et al., 2005. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica, 43(1): 55–64. doi: 10.1007/s11099-005-5064-xCrossRefGoogle Scholar
  4. Badeck F W, Tcherkez G, Nogues S, et al., 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid communications in mass spectrometry, 19(11): 1381–1391. doi: 10.1002/rcm.1912CrossRefGoogle Scholar
  5. Baken S, Verbeeck M, Verheyen D et al., 2015. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Water Research, 71: 160–170. doi: 10.1016/j.watres.2015.01.008CrossRefGoogle Scholar
  6. Barton L L, Abadia J, 2006. Iron Nutrition in Plants and Rhizospheric Microorganisms. Dordrecht: Springer Science & Business Media, 153–168.CrossRefGoogle Scholar
  7. Batty L C, Younger P L, 2003. Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) Trin ex. steudel. Annals of Botany, 92(6): 801–806. doi: 10.1093/aob/mcg205CrossRefGoogle Scholar
  8. Bidoglio G, Stumm W, 1994. Chemistry of Aquatic Systems: Local and Global Perspectives. Dordrecht: Springer Science & Business Media, 1–31.CrossRefGoogle Scholar
  9. Bird M, Kracht O, Derrien D et al., 2003. The effect of soil texture and roots on the stable carbon isotope composition of soil organic carbon. Australian Journal of Soil Research, 41(1): 77–94. doi: 10.1071/sr02044CrossRefGoogle Scholar
  10. Bornette G, Puijalon S, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73(1): 1–14. doi: 10.1007/s00027-010-0162-7CrossRefGoogle Scholar
  11. Briat J F, Lobréaux S, 1997. Iron transport and storage in plants. Trends in Plant Science, 2(5): 187–193. doi: 10.1016/s1360-1385(97)85225-9CrossRefGoogle Scholar
  12. Chang H S, Buettner S W, Seaman J C et al., 2014. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environmental Science & Technology, 48(16): 9270–9278. doi: 10.1021/es5015136CrossRefGoogle Scholar
  13. Chatterjee C, Gopal R, Dube B K, 2006. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae, 108(1): 1–6. doi: 10.1016/j.scienta.2006.01.004CrossRefGoogle Scholar
  14. Dawson T E, Mambelli S, Plamboeck A H et al., 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33: 507–559. doi: 10.1146/annurev.ecolsys.33.020602.095451CrossRefGoogle Scholar
  15. De Araújo T O, de Freitas-Silva L, Santana B V N et al., 2014. Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species. Environmental Science and Pollution Research, 21(4): 2777–2784. doi: 10.1007/s11356-013-2201-0CrossRefGoogle Scholar
  16. Farmer L M, Pezeshki S R, Larsen D, 2005. Effects of hydroperiod and iron on Typha latifolia grown in a phosphorusenhanced medium. Journal of Plant Nutrition, 28(7): 1175–1190. doi: 10.1081/pln-200063218CrossRefGoogle Scholar
  17. Greipsson S, 1995. Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. Journal of Plant Nutrition, 18(8): 1659–1665. doi: 10.1080/01904169509365011CrossRefGoogle Scholar
  18. Hansel C M, Fendorf S, Sutton S et al., 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science & Technology, 35(19): 3863–3868. doi: 10.1021/es0105459CrossRefGoogle Scholar
  19. Hauck M, Paul A, Gross S et al., 2003. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environmental and Experimental Botany, 49(2): 181–191. doi: 10.1016/S0098-8472(02)00069-2CrossRefGoogle Scholar
  20. Hendry G A F, Brocklebank K J, 1985. Iron-induced oxygen radical metabolism in waterlogged plants. New Phytologist, 101(1): 199–206. doi: 10.1111/j.1469-8137.1985.tb02826.xCrossRefGoogle Scholar
  21. Hoagland D R, Arnon D I, 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347: 1–32.Google Scholar
  22. Huang S, Jaffé P R, 2015. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences, 12(3): 769–779. doi: 10.5194/bg-12-769-2015CrossRefGoogle Scholar
  23. Immers A K, Vendrig K, Ibelings B W et al., 2014. Iron addition as a measure to restore water quality: implications for macrophyte growth. Aquatic Botany, 116: 44–52. doi: 10.1016/j.aquabot.2014.01.007CrossRefGoogle Scholar
  24. Immers A K, Bakker E S, Van Donk E et al., 2015. Fighting internal phosphorus loading: an evaluation of the large scale application of gradual Fe-addition to a shallow peat lake. Ecological Engineering, 83: 78–89. doi: 10.1016/j.ecoleng.2015.05.034CrossRefGoogle Scholar
  25. Khan N, Seshadri B, Bolan N et al., 2016. Chapter one-root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in Agronomy, 138: 1–96. doi: 10.1016/bs.agron.2016.04.002CrossRefGoogle Scholar
  26. Kobayashi T, Nishizawa N K, 2012. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63: 131–152. doi: 10.1146/annurev-arplant-042811-105522CrossRefGoogle Scholar
  27. Larbi A, Abadía A, Morales F et al., 2004. Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynthesis Research, 79(1): 59–69. doi: 10.1023/B:PRES.0000011919.35309.5eCrossRefGoogle Scholar
  28. Le Roux D, Stock W D, Bond W J et al., 1996. Dry mass allocation, water use efficiency and d13C in clones of Eucalyptus grandis, E. grandis × camaldulensis and E. grandis × nitens grown under two irrigation regimes. Tree Physiology, 16(5): 497–502. doi: 10.1093/treephys/16.5.497CrossRefGoogle Scholar
  29. Liang Y, Zhu Y G, Xia Y et al., 2006. Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Annals of Applied Biology, 149(3): 305–312. doi: 10.1111/j.1744-7348.2006.00095.xCrossRefGoogle Scholar
  30. Liu H J, Zhang J L, Christie P et al., 2008. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394(2–3): 361–368. doi: 10.1016/j.scitotenv.2008.02.004CrossRefGoogle Scholar
  31. Lucassen E C H E T, Smolders A J P, Roelofs J G M, 2000. Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Botany, 66(4): 321–327. doi: 10.1016/s0304-3770(99)00083-2CrossRefGoogle Scholar
  32. Lucassen E C H E T, Smolders A J P, Boedeltje G et al., 2006. Groundwater input affecting plant distribution by controlling ammonium and iron availability. Journal of Vegetation Science, 17(4): 425–434. doi: 10.1111/j.1654-1103.2006.tb02463.xCrossRefGoogle Scholar
  33. Luo T X, Zhang L, Zhu H Z et al., 2009. Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect. Ecography, 32(3): 526–538. doi: 10.1111/j.1600-0587.2008.05735.xCrossRefGoogle Scholar
  34. Ma J Y, Chen T, Qiang W Y et al., 2005. Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaumuria soongorica (Pall.) maxim. Journal of Integrative Plant Biology, 47(9): 1065–1073. doi: 10.1111/j.1744-7909.2005.00129.xCrossRefGoogle Scholar
  35. Marschner P, 2011. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. London: Academic Press, 191–199.Google Scholar
  36. Mehta C M, Khunjar W O, Nguyen V et al., 2015. Technologies to recover nutrients from waste streams: a critical review. Critical Reviews in Environmental Science and Technology, 45(4): 385–427. doi: 10.1080/10643389.2013.866621CrossRefGoogle Scholar
  37. Morales F, Grasa R, Abadía A et al., 1998. Iron chlorosis paradox in fruit trees. Journal of Plant Nutrition, 21(4): 815–825. doi: 10.1080/01904169809365444CrossRefGoogle Scholar
  38. Netto A T, Campostrini E, de Oliveira J G et al., 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104(2): 199–209. doi: 10.1016/j.scienta.2004.08.013CrossRefGoogle Scholar
  39. Neuhaus C, Geilfus C M, Mühling K H, 2014. Increasing root and leaf growth and yield in Mg-deficient faba beans (Vicia faba) by MgSO4 foliar fertilization. Journal of Plant Nutrition and Soil Science, 177(5): 741–747. doi: 10.1002/jpln.201300127CrossRefGoogle Scholar
  40. Osório J, Osório M L, Correia P J et al., 2014. Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. Scientia Horticulturae, 165: 148–155. doi: 10.1016/j.scienta.2013.10.042CrossRefGoogle Scholar
  41. Otte M L, Matthews D J, Jacob D L et al., 2004. Biogeochemistry of metals in the rhizosphere of wetland plants–an explanation for ‘Innate’ metal tolerance? In: Wong M H (ed). Wetlands Ecosystems in Asia: Function and Management. Amsterdam: Elsevier, 87–94.CrossRefGoogle Scholar
  42. Qin Lei, Jiang Ming, Tian Wei et al., 2017. Effects of wetland vegetation on soil microbial composition: a case study in Tumen River Basin, Northeast China. Chinese Geographical Science, 27(2): 239–247. doi: 10.1007/s11769-017-0853-2CrossRefGoogle Scholar
  43. Richter B D, Baumgartner J V, Powell J et al., 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10(4): 1163–1174. doi: 10.1046/j.1523-1739.1996.10041163.xCrossRefGoogle Scholar
  44. Schuster W S F, Phillips S L, Sandquist D R et al., 1992. Heritability of carbon isotope discrimination in Gutierrezia microcephala (Asteraceae). American Journal of Botany, 79(2): 216–221. doi: 10.2307/2445110CrossRefGoogle Scholar
  45. Snowden R E D, Wheeler B D, 1995. Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytologist, 131(4): 503–520. doi: 10.1111/j.1469-8137.1995.tb03087.xCrossRefGoogle Scholar
  46. Tripathi R D, Tripathi P, Dwivedi S et al., 2014. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics, 6(10): 1789–1800. doi: 10.1039/c4mt00111gCrossRefGoogle Scholar
  47. Van der Welle M E W, Niggebrugge K, Lamers L P M et al., 2007. Differential responses of the freshwater wetland species Juncus effusus L. and Caltha palustris L. to iron supply in sulfidic environments. Environmental Pollution, 147(1): 222–230. doi: 10.1016/j.envpol.2006.08.024CrossRefGoogle Scholar
  48. Voegelin A, Senn A C, Kaegi R et al., 2013. Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. Geochimica et Cosmochimica Acta, 117: 216–231. doi: 10.1016/j.gca.2013.04.022CrossRefGoogle Scholar
  49. Wheeler B D, Al-Farraj M M, Cook R E D, 1985. Iron toxicity to plants in base-rich wetlands: comparative effects on the distribution and growth of Epilobium hirsutum L. and Juncus subnodulosus schrank. New Phytologist, 100(4): 653–669. doi: 10.1111/j.1469-8137.1985.tb02810.xCrossRefGoogle Scholar
  50. Williams D G, Ehleringer J R, 2000. Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. Western North American Naturalist, 60(2): 121–129.Google Scholar
  51. Xu D F, Xu J M, He Y et al., 2009. Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants. Water, Air, and Soil Pollution, 200(1–4): 79–87. doi: 10.1007/s11270-008-9894-6CrossRefGoogle Scholar
  52. Zhang Xianzheng, 1986. Determination of plant chlorophyll content by a mixture of acetone and ethanol. Liaoning Agricultural Science, (3): 26–28. (in Chinese)Google Scholar
  53. Zhu X G, Long S P, Ort D R, 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61: 235–261. doi: 10.1146/annurev-arplant-042809-112206CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Joint Key Lab of Changbaishan Wetland and EcologyJilin Province, ChangchunChina

Personalised recommendations