Chinese Geographical Science

, Volume 28, Issue 1, pp 25–37 | Cite as

Drought and Spatiotemporal Variability of Forest Fires Across Mexico

  • Pompa-García Marín
  • Camarero J. Julio
  • Rodríguez-Trejo Dante Arturo
  • Vega-Nieva Daniel Jose


Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI). A total of 47 975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico (Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.


cluster drought forest fires geostatistics spatial clusters Standardised Precipitation-Evapotranspiration Index (SPEI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We recognize CONAFOR for gathering and sharing data on records of forest fires across Mexico. We acknowledge the financial support given by CONACYT and UJED. JM Zúñiga helped by commenting a previous version of this manuscript.


  1. Aguayo Quezada S, 2007. Almanaque Mexicano 2007. México: Aguilar, 271. (in Spanish)Google Scholar
  2. Aguilar A G, Santos C, 2011. Informal settlements’ needs and environmental conservation in Mexico City: an unsolved challenge for land-use policy. Land Use Policy, 28(4): 649–662. doi: 10.1016/j.landusepol.2010.11.002CrossRefGoogle Scholar
  3. Ávila-Flores D Y, Pompa-García M, Vargas-Pérez E, 2010a. Spatial analysis of forest fire occurrence in the state of Durango. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 16(2): 253–260. doi: 10.5154/r.rchscfa.2009.08.028 (in Spanish)CrossRefGoogle Scholar
  4. Ávila-Flores D Y, Pompa-García M, Antonio-Nemiga X et al., 2010b. Driving factors for forest fire occurrence in Durango State of Mexico: a geospatial perspective. Chinese Geographical Science, 20(6): 491–497. doi: 10.1007/s11769-010-0437-xCrossRefGoogle Scholar
  5. Balatsos P, Kalabokidis K, Koutsias N, 2007. Fire risk zoning at national level in Greece: methodological approach and outcome. Proceedings of the 4th International Wildland Fire Conference. Seville, Spain.Google Scholar
  6. Beguería S, Vicente-Serrano S M, Reig F et al., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10): 3001–3023. doi: 10.1002/joc.3887CrossRefGoogle Scholar
  7. Boer M M, Sadler R J, Wittkuhn R S et al., 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires-evidence from 50 years of active fire management in SW Australian forests. Forest Ecology Management, 259(1): 132–142. doi: 10.1016/j.foreco.2009.10.005CrossRefGoogle Scholar
  8. Cardille J A, Ventura S J, Turner M G, 2001. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecological Applications, 11(1): 111–127. doi: 10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2CrossRefGoogle Scholar
  9. Carrillo R L, Rodríguez D A, Tchikoué H et al., 2012. Análisis espacial de peligro de incendios forestales en Puebla, México. Interciencia, 37(9): 678–683. (in Spanish) CastañedaGoogle Scholar
  10. Rojas M F, Endara Agramont A R, Villers Ruiz M D L et al., 2015. Evaluación forestal y de combustibles en bosques de Pinus hartwegii en el Estado de México según densidades de cobertura y vulnerabilidad a incendios. Madera y Bosques, 21(2): 45–58. (in Spanish) CeranoGoogle Scholar
  11. Paredes J, Villanueva Díaz J, Fulé P Z, 2010. Reconstrucción de incendios y su relación con el clima para la reserva Cerro el Mohinora, Chihuahua. Revista Mexicana de Ciencias Forestales, 1(1): 63–74. (in Spanish)Google Scholar
  12. Chang Y, Zhu Z L, Bu B C et al., 2013. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10): 1989–2004. doi: 10.1007/s 10980-013-9935-4CrossRefGoogle Scholar
  13. Collins B M, Omi P N, Chapman P L, 2006. Regional relationships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36(3): 699–709. doi: 10.1139/x05-264CrossRefGoogle Scholar
  14. Comisión Nacional Forestal (CONAFOR), 2011. Evaluación preliminar de incendios en La Sabina y El Bonito, municipios de Múzquiz, Ocampo, Zaragoza y Acuña, del estado de Coahuila. Informe ejecutivo. Zapopan, Jalisco: Comisión nacional forestal, Secretaría de medio ambiente y recursos naturales (SEMARNAT). (in Spanish)Google Scholar
  15. Comisión Nacional Forestal (CONAFOR), 2016. Reporte Semanal de Incendios Forestales. Available at http://www.conafor. nal%202016%20-%20Incendios%20Forestales.pdf. Cited 09 May 2016. (in Spanish)Google Scholar
  16. Cook B I, Seager R, 2013. The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres, 118(4): 1690–1699. doi: 10.1002/jgrd.50111Google Scholar
  17. Cumming S G, 2001. Forest type and wildfire in the Alberta Boreal Mixedwood: what do fires burn? Ecological Applications, 11(1): 97–110. doi: 10.1890/1051-0761(2001)011[0097:FTAWIT] 2.0.CO;2CrossRefGoogle Scholar
  18. Díaz-Avalos C, Peterson D L, Alvarado E et al., 2001. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research, 31(9): 1579–1593. doi: 10.1139/x01-089Google Scholar
  19. Drury S A, Veblen T T, 2008. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico. Plant Ecology, 197(2): 299–316. doi: 10.1007/s11258-007-9379-5CrossRefGoogle Scholar
  20. Duncan B W, Schmalzer P A, 2004. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecology, 19(2): 153–165. doi: 10.1023/B: LAND.0000021714.97148.acCrossRefGoogle Scholar
  21. Environmental Systems Research Institute (ESRI), 2016. ArcGis. Available via Cited 10 May 2016.Google Scholar
  22. Flannigan M, Stocks B, Turetsky M et al., 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3): 549–60. doi: 10.1111/j.1365-2486.2008.01660.xCrossRefGoogle Scholar
  23. Flannigan M D, Logan K A, Amiro B D et al., 2005. Future area burned in Canada. Climatic Change, 72(1–2): 1–16. doi: 10.1007/s10584-005-5935-yCrossRefGoogle Scholar
  24. Flannigan M D, Amiro B D, Logan K A et al., 2006. Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11(4): 847–859. doi: 10.1007/s11027-005-9020-7CrossRefGoogle Scholar
  25. Fortin M J, Dale M R T, 2005. Spatial Analysis: A Guide for Ecologists. Cambridge, UK: Cambridge University Press.Google Scholar
  26. Fulé P Z, Villanueva-Díaz J, Ramos-Gómez M, 2005. Fire regime in a conservation reserve in Chihuahua, México. Canadian Journal of Forest Research, 35(2): 320–330. doi: 10.1139/x 04-173CrossRefGoogle Scholar
  27. Genton M G, Butry D T, Gumpertz M L et al., 2006. Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. International Journal of Wildland Fire, 15(1): 87–97. doi: 10.1071/ WF04034CrossRefGoogle Scholar
  28. Getis A, Ord J K, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3): 189–206. doi: 10.1111/j.1538-4632.1992.tb00261.xCrossRefGoogle Scholar
  29. Gillett N P, Weaver A J, Zwiers F W et al., 2004. Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18): L18211. doi: 10.1029/2004GL 020876Google Scholar
  30. González-Cabán A, Sandberg D V, 1989. Fire management and research needs in México. Journal of Forestry, 87(8): 20–26.Google Scholar
  31. González-Olabarria J R, Brotons L, Gritten D et al., 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. International Journal of Wildland Fire, 21(7): 905–914. doi: 10.1071/WF11039CrossRefGoogle Scholar
  32. Gralewicz N J, Nelson T A, Wulder M A, 2012. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. International Journal of Wildland Fire, 21(3): 230–242. doi: 10.1071/WF10095CrossRefGoogle Scholar
  33. Grantz K, Rajagopalan B, Clark M et al., 2007. Seasonal shifts in the North American monsoon. Journal of Climate, 20(9): 1923–1935. doi: 10.1175/JCLI4091.1CrossRefGoogle Scholar
  34. Harris I, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623–642. doi: 10.1002/joc.3711CrossRefGoogle Scholar
  35. Heyerdahl E K, Alvarado E, 2003. Influence of climate and land use on historical surface fires in pine-oak forests, Sierra Madre Occidental, Mexico. In: Veblen T T, Baker W L, Montenegro G et al. (eds). Fire and Climatic Change in Temperate Ecosystems of the Western Americas. New York: Springer, 196–217. doi: 10.1007/0-387-21710-X_7CrossRefGoogle Scholar
  36. Higgins R W, Yao Y, Wang X L, 1997. Influence of the North American monsoon system on the U.S. summer precipitation regime. Journal of Climate, 10(10): 2600–2622. doi: 10. 1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2CrossRefGoogle Scholar
  37. Ibarra-Montoya J L, Huerta-Martínez F M, Francisco M, 2016. Modelado espacial de incendios: una herramienta predictiva para el Bosque La Primavera, Jalisco México. Ambiente & Água, 11(1): 35–49. doi: 10.4136/ambi-agua.1536 (in Spanish)CrossRefGoogle Scholar
  38. Instituto Nacional de Estadística y Geografía (INEGI), 2015. Información por entidad, Número de habitantes, Chihuahua, 2015. Available via 08. Cited 09 May 2016. (in Spanish)Google Scholar
  39. Kaufman L, Rousseeuw P J, 1990. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley.CrossRefGoogle Scholar
  40. Koutsias N, Xanthopoulos G, Founda D et al., 2013. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894-2010). International Journal of Wildland Fire, 22(4): 493–507. doi: 10.1071/WF12003CrossRefGoogle Scholar
  41. Littell J S, Peterson D L, Riley K L et al., 2016. A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7): 2353–2369. doi: 10.1111/gcb.13275CrossRefGoogle Scholar
  42. Liu Z H, Yang J, Chang Y et al., 2012. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 18(6): 2041–2056. doi: 10.1111/j.1365-2486.2012.02649.xCrossRefGoogle Scholar
  43. Manzo-Delgado L, Aguirre-Gómez R, Álvarez R, 2004. Multitemporal analysis of land surface temperature using NOAA-AVHRR: preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20): 4417–4423. doi: 10.1080/01431160412331 269643CrossRefGoogle Scholar
  44. Manzo-Delgado L, Sánchez-Colón S, Álvarez R, 2009. Assessment of seasonal forest fire risk using NOAA-AVHRR: a case study in central Mexico. International Journal of Remote Sensing, 30(19): 4991–5013. doi: 10.1080/01431160902852796CrossRefGoogle Scholar
  45. Méndez González J, Návar Cháidez J J, González Rodríguez H G et al., 2007. Teleconexiones del fenómeno ENSO a la precipitación mensual en México. Ciencia UANL, 10(3): 290–298.Google Scholar
  46. Minnich R A, Franco-Vizcaíno E, 1997. La protección de la vegetación y los regimenes de incendios de la Sierra de San Pedro Mártir en Baja California. Fremontia, 25(3): 3–12. (in Spanish)Google Scholar
  47. Moreira F, Viedma O, Arianoutsou M et al., 2011. Landscape-wildfire interactions in Southern Europe: implications for landscape management. Journal of Environmental Management, 92(10): 2389–2402. doi: 10.1016/j.jenvman.2011. 06.028CrossRefGoogle Scholar
  48. Moritz M A, Batllori E, Bradstock R A et al., 2014. Learning to coexist with wildfire. Nature, 515(7525): 58–66. doi: 10.1038/ nature13946CrossRefGoogle Scholar
  49. Myers R L, 2006. Convivir con el Fuego-Manteniendo los Ecosistemas y Los Medios de Subsistencia Mediante el Manejo Integral del Fuego. Florida: The Nature Conservancy, 28. (in Spanish)Google Scholar
  50. Návar J, Lizárraga-Mendiola L, 2013. Hydro-climatic variability and forest fires in Mexico's northern temperate forests. Geofísica Internacional, 52(1): 5–20. doi: 10.1016/S0016-7169(13)71458-2CrossRefGoogle Scholar
  51. Ord J K, Getis A, 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4): 286–306. doi: 10.1111/j.1538-4632.1995.tb00912.xCrossRefGoogle Scholar
  52. Parisien M A, Peters V S, Wang Y H et al., 2006. Spatial patterns of forest fires in Canada, 1980-1999. International Journal of Wildland Fire, 15(3): 361–374. doi: 10.1071/WF06009CrossRefGoogle Scholar
  53. Podur J, Martell D L, Csillag F, 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecological Modelling, 164: 1–20. doi: 10.1016/S0304-3800(02)00386-1CrossRefGoogle Scholar
  54. Preisler H K, Brillinger D R, Burgan R E et al., 2004. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13: 133–142. doi: 10.1071/WF 02061CrossRefGoogle Scholar
  55. Preisler H K, Westerling A L, 2007. Statistical model for forecasting monthly large wildfire events in western United States. Journal of Applied Meteorology and Climatology, 46(7): 1020–1030. doi: 10.1175/JAM2513.1CrossRefGoogle Scholar
  56. Prestemon J P, Butry D T, 2005. Time to burn: modeling wildland arson as an autoregressive crime function. American Journal of Agricultural Economics, 87(3): 756–770. doi: 10.1111/j. 1467-8276.2005.00760.xCrossRefGoogle Scholar
  57. Ray A J, Garfin G M, Wilder M et al., 2007. Applications of monsoon research: opportunities to inform decision making and reduce regional vulnerability. Journal of Climate, 20(9): 1608–1627. doi: 10.1175/JCLI4098.1CrossRefGoogle Scholar
  58. Riley K L, Abatzoglou J T, Grenfell I C et al., 2013. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale. International Journal of Wildland Fire, 22(7): 894–909. doi: 10.1071/WF12149CrossRefGoogle Scholar
  59. Rivera-Huerta H, Safford H D, Miller J D, 2016. Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecology, 12(1): 52–72. doi: 10.4996/fireecology.1201052CrossRefGoogle Scholar
  60. Rocca M E, Brown P M, MacDonald L H et al., 2014. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecology and Management, 327: 290–305. doi: 10.1016/j.foreco.2014.04.005CrossRefGoogle Scholar
  61. Rodríguez-Trejo D A, Fulé P Z, 2003. Fire ecology of Mexican pines and fire management proposal. International Journal of Wildland Fire, 12(1): 23–37. doi: 10.1071/WF02040CrossRefGoogle Scholar
  62. Rodríguez-Trejo D A, 2008. Fire regimes, fire ecology and fire management in Mexico. Ambio: A Journal of the Human Environment, 37(7): 548–556. doi: 10.1579/0044-7447-37.7.548 RodríguezCrossRefGoogle Scholar
  63. Trejo D A, 2015. Incendios de Vegetación: Su Ecología, Manejo e Historia. México: Colegio de Post Graduados, 814. (in Spanish)Google Scholar
  64. Román-Cuesta R M, Gracia M, Retana J, 2003. Environmental and human factors influencing fire trends in ENSO and non-ENSO years in tropical Mexico. Ecological Applications, 13(4): 1177–1192. doi: 10.1890/1051-0761(2003)13[1177: EAHFIF]2.0.CO;2CrossRefGoogle Scholar
  65. SAS Institute, 2005. Version 9.1 SAS User's Guide: Statistics. Cary, North Carolina, USA: SAS Institute.Google Scholar
  66. Seager R, Ting M F, Held I et al., 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828): 1181–1184. doi: 10.1126/science.1139601CrossRefGoogle Scholar
  67. Seager R, Ting M, Davis M et al., 2009. Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera, 22(1): 1–31.Google Scholar
  68. Skinner C N, Burk J J, Barbour M G et al., 2008. Influences of climate on fire regimes in montane forests of north-western Mexico. Journal of Biogeography, 35(8): 1436–1451. doi: 10.1111/j.1365-2699.2008.01893.xCrossRefGoogle Scholar
  69. Trouet V, Taylor A H, Wahl E R et al., 2010. Fire-climate interactions in the American West since 1400 CE. Geophysical Research Letters, 37(4): L04702. doi: 10.1029/2009GL041695Google Scholar
  70. Vadrevu K P, Csiszar I, Ellicott E et al., 2013. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 224–238. doi: 10.1109/JSTARS.2012. 2210699 VanCrossRefGoogle Scholar
  71. Wagner C E, 1988. The historical pattern of annual burned area in Canada. The Forestry Chronicle, 64(3): 182–185. doi: 10.5558/tfc64182-3CrossRefGoogle Scholar
  72. Vázquez A, Moreno J M, 2001. Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecology and Managemen, 147(1): 55–65. doi: 10.1016/S0378-1127(00) 00436-9CrossRefGoogle Scholar
  73. Vicente-Serrano S M, Beguería S, López-Moreno J I, 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7): 1696–1718. doi: 10.1175/2009JCLI2909.1CrossRefGoogle Scholar
  74. Vicente-Serrano S M, Gouveia C, Camarero J J et al., 2013. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110(1): 52–57. doi: 10.1073/ pnas.1207068110CrossRefGoogle Scholar
  75. Wang Y H, Anderson K R, 2010. An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980-2007. International Journal of Wildland Fire, 19(8): 1059–1072. doi: 10.1071/WF09085CrossRefGoogle Scholar
  76. Westerling A L, Swetnam T W, 2003. Interannual to decadal drought and wildfire in the western United States. EOS, 84(49): 545–555. doi: 10.1029/2003EO490001CrossRefGoogle Scholar
  77. Westerling A L, 2008. Climatology for wildfire management. In: Holmes T P, Prestemon J P, Abt K L (eds). The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species. Dordrecht: Springer, 107–122. doi: 10.1007/978-1-4020-4370-3_6CrossRefGoogle Scholar
  78. Williams A A J, Karoly D J, Tapper N, 2001. The sensitivity of Australian fire danger to climate change. Climatic Change, 49(1–2): 171–191. doi: 10.1023/A:1010706116176CrossRefGoogle Scholar
  79. Williams A P, Allen C D, Macalady A K et al., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3): 292–297. doi: 10. 1038/NCLIMATE1693CrossRefGoogle Scholar
  80. Wotton B M, Martell D L, Logan K A, 2003. Climate change and people-caused forest fire occurrence in Ontario. Climatic Change, 60(3): 275–295. doi: 10.1023/A:1026075919710CrossRefGoogle Scholar
  81. Wu Z W, He H S, Yang J et al., 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment, 493: 472–480. doi: 10.1016/j.scitotenv.2014.06.011CrossRefGoogle Scholar
  82. Yang J, He H S, Shifley S R, 2008. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands. Ecological Applications, 18(5): 1212–1225. doi: 10.1890/07-0825.1CrossRefGoogle Scholar
  83. Yocom L L, Fulé P Z, Brown P M et al., 2010. El Niño-Southern Oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91(6): 1660–1671. doi: 10.1890/ 09-0845.1CrossRefGoogle Scholar
  84. Yocom L L, Fulé P Z, 2012. Human and climate influences on frequent fire in a high-elevation tropical forest. Journal of Applied Ecology, 49(6): 1356–1364. doi: 10.1111/j.1365-2664. 2012.02216.xCrossRefGoogle Scholar
  85. Zhang Songlin, Zhang Kun, 2007. Comparison between general Moran’s Index and Getis-Ordgeneral G of spatial autocorrelation. Acta Scientiarum Naturalium Universitatis Sunyatseni, 46(4): 93–97. (in Chinese)Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pompa-García Marín
    • 1
  • Camarero J. Julio
    • 2
  • Rodríguez-Trejo Dante Arturo
    • 3
  • Vega-Nieva Daniel Jose
    • 1
  1. 1.Facultad de Ciencias ForestalesUniversidad Juárez del Estado de DurangoDurangoMéxico
  2. 2.Instituto Pirenaico de Ecología IPE-CSICZaragoza Spain
  3. 3.División de Ciencias ForestalesUniversidad Autónoma ChapingoChapingoMéxico

Personalised recommendations