Control Theory and Technology

, Volume 15, Issue 2, pp 117–128 | Cite as

Optimal heat release shaping in a reactivity controlled compression ignition (RCCI) engine

  • Carlos Guardiola
  • Benjamín Pla
  • Antonio García
  • Vicente Boronat


The present paper addresses the optimal heat release (HR) law in a single cylinder engine operated under reactivity controlled compression ignition (RCCI) combustion mode to minimise the indicated specific fuel consumption (ISFC) subject to different constraints including pressure related limits (maximum cylinder pressure and maximum cylinder pressure gradient). With this aim, a 0-dimensional (0D) engine combustion model has been identified with experimental data. Then, the optimal control problem of minimising the ISFC of the engine at different operating conditions of the engine operating map has been stated and analytically solved. To evaluate the method viability a data-driven model is developed to obtain the control actions (gasoline fraction) leading to the calculated optimal HR, more precisely to the optimal ratio between premixed and diffusive combustion. The experimental results obtained with such controls and the differences with the optimal HR are finally explained and discussed.


Diesel engine RCCI combustion analysis optimal control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Payri, J. M. Luján, C. Guardiola, et al. A challenging future for the IC engine: New technologies and the control role. Oil & Gas Science and Technology–Revue D IFP Energies Nouvelles, 2015, 70(1): 15–30.CrossRefGoogle Scholar
  2. [2]
    H. Yanagihara, Y. Sato, J. Minuta. A simultaneous reduction in NOx and soot in diesel engines under a new combustion system (Uniform Bulky Combustion System–UNIBUS). Proceedings of the 17th international Vienna Motor Symposium, Vienna, 1996: 303–314.Google Scholar
  3. [3]
    D. A. Splitter, M. L. Wissink, T. L. Hendricks, et al. Comparison of RCCI, HCCI, and CDC operation from low to full load. THIESEL 2012 conference on thermo-and fluid dynamic processes in direct injection engines. Valencia, 2012.Google Scholar
  4. [4]
    J. Benajes, J. V. Pastor, A. García, et al. The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 2015, 159(1): 952–961.CrossRefGoogle Scholar
  5. [5]
    J. Benajes, A. García, J. Monsalve-Serrano, et al. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 2016, 123(1): 381–391.CrossRefGoogle Scholar
  6. [6]
    S. Molina, A. García, J. M. Pastor, et al. Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 2015, 143: 211–227.CrossRefGoogle Scholar
  7. [7]
    D. A. Splitter, R. D. Reitz. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines. Fuel, 2014, 118(5): 163–175.CrossRefGoogle Scholar
  8. [8]
    J. Benajes, S. Molina, A. García, et al. Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 2015, 90: 1261–1271.CrossRefGoogle Scholar
  9. [9]
    J. Benajes, S. Molina, A. García, et al. An investigation on RCCI combustion in a heavy duty diesel engine using incylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 2014, 63(1): 66–76.CrossRefGoogle Scholar
  10. [10]
    J. Li, W. M. Yang, H. An, et al. Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel. Energy Conversion and Management, 2015, 92(1): 342–352.CrossRefGoogle Scholar
  11. [11]
    J. Benajes, S. Molina, A. García, et al. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 2015, 99(1): 193–209.CrossRefGoogle Scholar
  12. [12]
    J. Benajes, J. V. Pastor, A. García, et al. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 2016, 126(1): 497–508.CrossRefGoogle Scholar
  13. [13]
    F. Zurbriggen, T. Ott, C. Onder, et al. Optimal control of the heat release rate of an internal combustion engine with pressure gradient, maximum pressure, and knock constraints. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(6): DOI 10.1115/1.4027592.Google Scholar
  14. [14]
    L. Eriksson, M. Sivertsson. Computing optimal heat release rates in combustion engines. SAE International Journal of Engines, 2015, 8(3): 1069–1079.CrossRefGoogle Scholar
  15. [15]
    L. Eriksson, M. Sivertsson. Calculation of optimal heat release rates under constrained conditions. SAE International Journal of Engines, 2016, 9(2): 1143–1162.CrossRefGoogle Scholar
  16. [16]
    Y. Zhang, T. Shen. Model based combustion phase optimization in SI engines: Variational analysis and spark advance determination. IFAC-PapersOnLine, 2016, 49(11): 679–684.CrossRefGoogle Scholar
  17. [17]
    F. Payri, P. Olmeda, J. Martín, et al. A new tool to perform global energy balances in DI diesel engines. SAE International Journal of Engines, 2014, 7(7): 43–59.CrossRefGoogle Scholar
  18. [18]
    S. Yu, M. Zheng. Ethanol-diesel premixed charge compression ignition to achieve clean combustion under high loads. Proceedings of the Institution of Mechanical Engineers–Part D: Journal of Automobile Engineering, 2016, 30(4): 527–541.CrossRefGoogle Scholar
  19. [19]
    D. Klos, D. Janecek, S. Kokjohn. Investigation of the combustion instability-NOx tradeoff in a dual fuel reactivity controlled compression ignition (RCCI) engine. SAE International Journal of Engines, 2015, 8(2): 821–830.CrossRefGoogle Scholar
  20. [20]
    G. Woschni. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Technical Paper. 1967: DOI 10.4271/670931.Google Scholar
  21. [21]
    C. Guardiola, J. López, J. Martín, et al. Semi-empirical in-cylinder pressure based model for NOx prediction oriented to control applications. Applied Thermal Engineering, 2011, 31(16): 3275–3286.Google Scholar
  22. [22]
    C. Guardiola, J. Martín, B. Pla, et al. Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 2017, 110: 1011–1020.CrossRefGoogle Scholar
  23. [23]
    J. M. Desantes, J. J. López, P. Redón, et al. Evaluation of the Thermal NO formation mechanism under low temperature diesel combustion conditions. International Journal of Engine Research, 2012, 13(6): 531–539.CrossRefGoogle Scholar
  24. [24]
    O. Sundstrm, L. Guzzella. A generic dynamic programming Matlab function. IEEE International Conference on Control Applications/International Symposium on Intelligent Control, St Petersburg: IEEE, 2009: 1625–1630.Google Scholar
  25. [25]
    J. Benajes, A. García, J. M. Pastor, et al. Effects of piston bowl geometry on reactivity controlled compression ignition heat transfer and combustion losses at different engine loads. Fuel, 2016, 98(1): 64–77.Google Scholar
  26. [26]
    J. Benajes, J. V. Pastor, A. García, et al. An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 2015, 103: 1019–1031.CrossRefGoogle Scholar
  27. [27]
    J. M. Desantes, J. Benajes, A. García, et al. The role of the incylinder gas temperature and oxygen concentration over low load RCCI combustion efficiency. Energy, 2014, 78(SI): 854–868.CrossRefGoogle Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Carlos Guardiola
    • 1
  • Benjamín Pla
    • 1
  • Antonio García
    • 1
  • Vicente Boronat
    • 1
  1. 1.CMT-Motores TérmicosUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations