Iteration improvement of Taylor-series estimation using hyperbolic systems for FM-radio source localization in Bangkok

Abstract

Taylor-series estimation is considered a useful technique for estimating the location of a source based on intersections of hyperbolic curves of the time differences of arrival of signals received by several sensors. One of the common challenges in estimating the location of a source emitter is to select a starting point in each iterative calculation. Different starting points can significantly impact search performance and the accuracy of the estimated signal emitter location. This study proposes an initial position for solving Taylor-series expanded nonlinear equations. Our recommended initial position choices (approximately graphical mode or AGM) use a simple approximately hyperbolic estimator to calculate the starting point in each iterative search for the source location. Our study shows that AGM estimator can help improve the calculation speed and produce more accurate results. We compared our method with the other two common choices, first Rx mode and center of sensors mode (CPM). The results show that our AGM method performs up to 4.64% more accuracy.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Wu, G.Z., Zhang, M., Guo, F.C.: DOA estimation and self-calibration in partially calibrated subarray-based uniform linear arrays. Signal Image Video Process. 14, 233–239 (2020)

    Article  Google Scholar 

  2. 2.

    Ma, F., Zhang, X.: Wideband DOA estimation based on focusing signal subspace. SIVP 13, 675–682 (2019)

    Google Scholar 

  3. 3.

    Liu, C., Liu, F., Zhang, S.: A novel direction-of-arrival estimation method for wideband signals. SIVP 6, 141–145 (2012)

    Google Scholar 

  4. 4.

    Singh, P., Sircar, P.: Time delays and angles of arrival estimation using known signals. SIVP 6, 171–178 (2012)

    Google Scholar 

  5. 5.

    Zekavat, S.A., Buehrer, R.M.: Handbook of Position Location: Theory, Practice, and Advances. Wiley, New Jersey (2012)

    Google Scholar 

  6. 6.

    Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech. Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  7. 7.

    Ho, K.C., Xu, W.: An accurate algebric solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 52(9), 2453–2463 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Herath, S.C.K., Pathirana, P.N.: Robust localization with minimum number of TDOA measurements. IEEE Signal Process. Lett. 20(10), 949–951 (2013)

    Article  Google Scholar 

  9. 9.

    Yin, J., Wan, Q., Yang, S., Ho, K.C.: A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Process. Lett. 23(1), 144–148 (2016)

    Article  Google Scholar 

  10. 10.

    Tirer, T., Weiss, A.J.: High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 23(2), 192–196 (2016)

    Article  Google Scholar 

  11. 11.

    Shi, X., Anderson, B.D.O., Mao, G., Yang, Z., Chen, J., Lin, Z.: Robust localization using time difference of arrivals. IEEE Signal Process. Lett. 23(10), 1320–1324 (2016)

    Article  Google Scholar 

  12. 12.

    Grenier, D., Elahian, B., Blanchard-Lapierre, A.: Joint delay and direction of arrivals estimation in mobile communications. SIVP 10, 45–54 (2016)

    Google Scholar 

  13. 13.

    Cao, H., Chan, Y.T., So, H.C.: Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Process. Lett. 24(5), 564–568 (2017)

    Article  Google Scholar 

  14. 14.

    Blanchard-Lapierre, A., Grenier, D.: The JDTDOA algorithm applied to signal recovery: a performance analysis. SIVP 11, 1205–1212 (2017)

    Google Scholar 

  15. 15.

    Sun, Y., Ho, K.C., Wan, Q.: Solution and analysis of TDOA localization of near distant source in closed form. IEEE Trans. Signal Process. 62(2), 320–335 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Jin, B., Xu, X., Zhang, T.: Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint. Sensors 18(3), 778 (2018)

    Article  Google Scholar 

  17. 17.

    de Sousa, M.N., Thoma, R.S.: Enhancement of localization systems in NLOS urban scenario with multipath ray tracing fingerprints and machine learning. Sensors 18(11), 4073 (2018)

    Article  Google Scholar 

  18. 18.

    Stefanski, J., Sadowski, J.: TDOA versus ATDOA for wide area multilateration system. EURASIP J. Wirel. Commun. Network. 1, 179 (2018)

    Article  Google Scholar 

  19. 19.

    Wang, D., Yin, J., Chen, X., Jia, C., Wei, F.: On the use of calibration emitters for TDOA source localization in the presence of synchronization clock bias and sensor location errors. EURASIP J. Wirel. Commun. Network. 1, 37 (2019)

    Google Scholar 

  20. 20.

    Dalveren, Y., Kara, A.: Multipath exploitation in emitter localization for irregular terrains. Radioengineering 28(2), 473–482 (2019)

    Article  Google Scholar 

  21. 21.

    Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. 20(2), 183–198 (1984)

    Article  Google Scholar 

  22. 22.

    Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  Google Scholar 

  23. 23.

    Foy, W.H.: Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976)

    Article  Google Scholar 

  24. 24.

    Ludloff, A.: Praxixwissen Radar und Radarsignalverarbeitung, 3rd edn. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Wiesbaden (2002)

    Google Scholar 

  25. 25.

    Champagne, B., Eizenman, M., Pasupathy, S.: Exact maximum likelihood time delay estimation for short observation intervals. IEEE Trans. Signal Process. 39(6), 1245–1257 (1991)

    Article  Google Scholar 

  26. 26.

    Jacovitti, G., Scarano, G.: Discrete time techniques for time delay estimation. IEEE Trans. Signal Process. 41(2), 525–533 (1993)

    Article  Google Scholar 

  27. 27.

    Moghaddam, P.P., Amindavar, H., Kirlin, R.L.: A new time-delay estimation in multipath. IEEE Trans. Signal Process. 51(5), 1129–1142 (2003)

    MathSciNet  Article  Google Scholar 

  28. 28.

    The National broadcasting and telecommunications commission (NBTC) of Thailand. https://www.nbtc.go.th/Home.aspx?lang=en-us. Accessed 15 Jan 2020

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful review and constructive comments. This research was supported by the National Research Council of Thailand under Grants no. 187/2561. Corresponding author is Narathep Phruksahiran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Narathep Phruksahiran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phruksahiran, N., Michanan, J. Iteration improvement of Taylor-series estimation using hyperbolic systems for FM-radio source localization in Bangkok. SIViP 15, 247–254 (2021). https://doi.org/10.1007/s11760-020-01747-8

Download citation

Keywords

  • Source localization
  • Time difference of arrival
  • Taylor-series estimation