Skip to main content
Log in

Fusing multi-stream deep neural networks for facial expression recognition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Among the factors contributing to conveying emotional state of an individual is facial expression. It represents the most important nonverbal communication and a challenging task in the field of computer vision. In this work, we propose a combined deep architecture model for facial expression recognition that uses appearance and geometric features extracted separately using convolution layers and supervised decent method, respectively. The proposed model is trained on three public databases [the Extended Cohn Kanade (CK+), the OULU-CASIA VIS, and the JAFFE]. The three databases contain a limited amount of data that we enlarge by adding a step of data augmentation to original images. For further comparison, two additional models that use appearance features only and geometric features only are trained on the same subset of data, to show how the combination of the two deep architectures influences results. On the other hand, in order to investigate the generalization of the combined model, a cross-database evaluation is performed. The obtained results achieve the state-of-the-art and improve recent work, especially in case of cross-database evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kamarol, S.K.A., Jaward, M.H., Kälviäinen, H., Parkkinen, J., Parthiban, R.: Joint facial expression recognition and intensity estimation based on weighted votes of image sequences. Pattern Recognit. Lett. 92, 25 (2017)

    Article  Google Scholar 

  2. Mao, Q., Rao, Q., Yu, Y., Dong, M.: Hierarchical Bayesian theme models for multipose facial expression recognition. IEEE Trans. Multimed. 19(4), 861 (2017)

    Article  Google Scholar 

  3. Li, J., Zhang, D., Zhang, J., Zhang, J., Li, T., Xia, Y., Yan, Q., Xun, L.: Facial expression recognition with faster R-CNN. Procedia Comput. Sci 107, 135 (2017)

    Article  Google Scholar 

  4. Mehrabian, A.: Communication without words. Commun. Theory 1, 193–200 (2011)

    Google Scholar 

  5. Ekman, P.: An argument for basic emotions. Cognit. Emot. 6(3–4), 169 (1992)

    Article  Google Scholar 

  6. Mohammadian, A., Aghaeinia, H., Towhidkhah, F.: Incorporating prior knowledge from the new person into recognition of facial expression. Signal Image Video Process. 10(2), 235 (2016)

    Article  Google Scholar 

  7. Yurtkan, K., Demirel, H.: Entropy-based feature selection for improved 3D facial expression recognition. Signal Image Video Process. 8(2), 267 (2014)

    Article  Google Scholar 

  8. Ashir, A.M., Eleyan, A.: Facial expression recognition based on image pyramid and single-branch decision tree. Signal Image Video Process. 11(6), 1017 (2017)

    Article  Google Scholar 

  9. Zarbakhsh, P., Demirel, H.: Low-rank sparse coding and region of interest pooling for dynamic 3D facial expression recognition. Signal Image Video Process. 12(8), 1611–1618 (2018)

    Article  Google Scholar 

  10. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  11. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision, vol. 1681, pp. 319–345. Springer (1999)

  12. Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610 (2017)

    Article  Google Scholar 

  13. Sánchez, A., Ruiz, J.V., Moreno, A.B., Montemayor, A.S., Hernández, J., Pantrigo, J.J.: Differential optical flow applied to automatic facial expression recognition. Neurocomputing 74(8), 1272 (2011)

    Article  Google Scholar 

  14. Fan, X., Tjahjadi, T.: A dynamic framework based on local Zernike moment and motion history image for facial expression recognition. Pattern Recognit. 64, 399 (2017)

    Article  Google Scholar 

  15. Pu, X., Fan, K., Chen, X., Ji, L., Zhou, Z.: Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing 168, 1173 (2015)

    Article  Google Scholar 

  16. Cruz, E.A.S., Jung, C.R., Franco, C.H.E.: Facial expression recognition using temporal POEM features. Pattern Recognit. Lett. 114, 13–21 (2018)

    Article  Google Scholar 

  17. Jung, H., Lee, S., Yim, J., Park, S., Kim, J.: Joint fine-tuning in deep neural networks for facial expression recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2983–2991. IEEE (2015)

  18. Mlakar, U., Potočnik, B.: Automated facial expression recognition based on histograms of oriented gradient feature vector differences. Signal Image Video Process. 9(1), 245 (2015)

    Article  Google Scholar 

  19. Sun, Z., Hu, Z., Chiong, R., Wang, M., Zhao, S.: An adaptive weighted fusion model with two subspaces for facial expression recognition. Signal Image Video Process. 12(5), 835 (2018)

    Article  Google Scholar 

  20. Barman, A., Dutta, P.: Facial expression recognition using distance and shape signature features. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.06.018

  21. Xiong, X., Torre, F.: Supervised descent method and its applications to face alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539 (2013)

  22. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. 1–511. IEEE (2001)

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701 (2012)

  25. Salmam, F.Z., Madani, A., Kissi, M.: Facial expression recognition using decision trees. In: 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), pp. 125–130. IEEE (2016)

  26. Hall, M.A.: Correlation-based feature selection for machine learning, University of Waikato Hamilton (1999)

  27. Devi, M.I., Rajaram, R., Selvakuberan, K.: Generating best features for web page classification. Webology 5(1), 52 (2008)

    Google Scholar 

  28. Happy, S., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1 (2015)

    Article  Google Scholar 

  29. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)

  30. Zhao, G., Huang, X., Taini, M., Li, S.Z., Pietikäinen, M.: Facial expression recognition from near-infrared videos. Image Vis. Comput. 29(9), 607 (2011)

    Article  Google Scholar 

  31. Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In:Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, pp 200–205 (1998). https://doi.org/10.1109/AFGR.1998.670949

  32. Chollet, F., et al.: Keras. https://keras.io (2015)

  33. De la Torre, F., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.: IntraFace. In: IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, vol. 1. NIH Public Access (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmam, F.Z., Madani, A. & Kissi, M. Fusing multi-stream deep neural networks for facial expression recognition. SIViP 13, 609–616 (2019). https://doi.org/10.1007/s11760-018-1388-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1388-4

Keywords

Navigation