Skip to main content
Log in

Image restoration using spatially variant hyper-Laplacian prior

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The heavy-tailed hyper-Laplacian prior has been successfully applied in image restoration tasks, in which the unified distribution is adopted for the whole image. However, the gradient distribution of natural image is reasonably assumed to be spatially variant, e.g., gradient distribution of the region with less texture is more heavy-tailed. In this paper, we propose to model the gradient distribution of natural images as spatially variant hyper-Laplacian. The proposed model adapts the hyper-Laplacian parameters to each pixel. Within the maximum a posterior model, we address the problem using an alternating optimization method. Also the proposed model is free from tedious tuning trade-off parameters. Compared with the deconvolution algorithm using uniform hyper-Laplacian prior, the experimental results validate that the proposed model can achieve better restoration results in terms of visual quality and quantitative indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chan, T.F., Shen, J.H., Zhou, H.M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25(1), 107–125 (2006)

    Article  MathSciNet  Google Scholar 

  2. Li, M., Nguyen, T.Q.: Markov random field model-based edge-directed image interpolation. IEEE Trans. Image Process. 17(7), 1121–1128 (2008)

    Article  MathSciNet  Google Scholar 

  3. Joshi, N., et al.: Image deblurring and denoising using color priors. IEEE Conf. Comput. Vis. Pattern Recognit. 2009, 1550–1557 (2009)

    Google Scholar 

  4. Arietta, S., Lawrence, J.: Building and using a database of one trillion natural-image patches. IEEE Comput. Graph. Appl. 31(1), 9–19 (2010)

    Article  Google Scholar 

  5. Levin, A., Nadler, B.: Natural image denoising: Optimality and inherent bounds. IEEE Conf. Comput. Vis. Pattern Recognit. 2011, 2833–2840 (2011)

    Google Scholar 

  6. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. IEEE Int. Conf. Comput. Vis 2011, 479–486 (2011)

    Google Scholar 

  7. Tang, S., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Sig. Process. 94(1), 339–349 (2014)

    Article  Google Scholar 

  8. Jidesh, P., Bini, A.A.: Image despeckling and deblurring via regularized complex diffusion. SIViP 11(6), 977–984 (2017)

    Article  Google Scholar 

  9. Hong, H.Y., Hua, X., Zhang, X.H., Shi, Y.: Multi-frame real image restoration based on double loops with alternative maximum likelihood estimation. SIViP 10(8), 1489–1495 (2016)

    Article  Google Scholar 

  10. Fatih, K., Cabir, V.: Blind restoration and resolution enhancement of images based on complex filtering. SIViP 10(6), 1159–1167 (2016)

    Article  Google Scholar 

  11. Lai, Z., et al.: Sparse tensor discriminant analysis. IEEE Trans. Image Process. 22(10), 3904–3915 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, S., et al.: Weighted nuclear norm minimization with application to image denoising. IEEE Conf. Comput. Vis. Pattern Recognit. 2014, 2862–2869 (2014)

    Google Scholar 

  13. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, T.S., et al.: Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 683–694 (2012)

    Article  Google Scholar 

  15. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: NIPS’09 Proceeding of the 22nd International Conference on Neural Information Processing Systems, pp. 1033–1041 (2009)

  16. Cho, T.S., et al.: A content-aware image prior. IEEE Conf. Comput. Vis. Pattern Recognit. 2010, 169–176 (2010)

    Google Scholar 

  17. Levin, A., et al.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

    Article  Google Scholar 

  18. Couzinie-Devy, F., et al.: Learning to estimate and remove non-uniform image blu. IEEE Conf. Comput. Vis. Pattern Recognit. 2013, 1075–1082 (2013)

    Google Scholar 

  19. Cheng, Q., et al.: Inpainting for remotely sensed images with a multichannel nonlocal total variation model. IEEE Trans. Geosci. Remote Sens. 52(1), 175–187 (2014)

    Article  Google Scholar 

  20. Liu, H., et al.: Non-local extension of total variation regularization for image restoration. IEEE Int. Symp. Circuits Syst. (ISCAS) 2014, 1102–1105 (2014)

    Google Scholar 

  21. Liu, R.W., et al.: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imaging 32(6), 702–720 (2014)

    Article  Google Scholar 

  22. Wu, H., Wu, Y., Wen, Z.: Texture smoothing based on adaptive total variation. Found. Intell. Syst. 277, 43–54 (2014)

    MATH  Google Scholar 

  23. Bishop, T.E., Molina, R., Hopgood, J.R.: Nonstationary blind image restoration using variational methods. ICIP 1, 125–128 (2007)

    Google Scholar 

  24. Pogue, B.W., et al.: Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38(13), 2950–2961 (1999)

    Article  Google Scholar 

  25. Xu, H., et al.: Iterative nonlocal total variation regularization method for image restoration. PLoS ONE 8(6), e65865 (2013)

    Article  Google Scholar 

  26. Zuo, W., et al.: A generalized iterated shrinkage algorithm for non-convex sparse coding. IEEE Int. Conf. Comput. Vis. 2013, 217–224 (2013)

    Google Scholar 

  27. Levin, A., et al.: Understanding and evaluating blind deconvolution algorithms. IEEE Conf. Comput. Vis. Pattern Recognit. 2009, 1964–1971 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Gao, Y., Guo, B. et al. Image restoration using spatially variant hyper-Laplacian prior. SIViP 13, 155–162 (2019). https://doi.org/10.1007/s11760-018-1340-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1340-7

Keywords

Navigation