Skip to main content
Log in

Using spatial overlap ratio of independent classifiers for likelihood map fusion in mean-shift tracking

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We combine the outputs of independent classifiers for mean-shift tracking within the likelihood map fusion framework and introduce a novel likelihood fusion technique that directly employs the tracking confidences of likelihood maps which are generated by different binary classifiers. Our proposed measure tries to compensate drifting that may be caused by each likelihood map using their independent tracking results. We present results obtained with the proposed fusion approach using two different classifiers, where one models the tracked object and one models the background. The results show superior performance of the proposed fusion technique as compared to the others. We further discuss how the proposed likelihood map fusion approach can be generalized to any number and any kind of likelihood maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In this text, we, too, prefer to use the term likelihood map, but it must be noted that weight image [1], likelihood map [8], likelihood image [5, 7] probability image [2] and confidence map [3] refer to the same image (or map) where mean-shift tracking is applied.

  2. https://www.saygintopkaya.com/isaygint/fusiontracker.

References

  1. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), vol. 2, pp. 142–149 (2000)

  2. Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 2(2), 13–27 (1998)

    Google Scholar 

  3. Avidan, S.: Ensemble tracking. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 494–501 (2005)

  4. Chang, W.C., Cho, C.W.: Online boosting for vehicle detection. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 40(3), 892–902 (2010)

    Article  Google Scholar 

  5. Collins, R., Liu, Y., Leordeanu, M.: On-line selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 1631–1643 (2005)

    Article  Google Scholar 

  6. Liang, D., Huang, Q., Gao, W., Yao, H.: Online selection of discriminative features using bayes error rate for visual tracking. Adv. Multimed. Inf. Process. PCM 2006, 547–555 (2006)

    Google Scholar 

  7. Yeh, Y.J., Hsu, C.T.: Online selection of tracking features using adaboost. IEEE Trans. Circuits Syst. Video Technol. 19(3), 442–446 (2009)

    Article  Google Scholar 

  8. Yin, Z., Porikli, F., Collins, R.T.: Likelihood map fusion for visual object tracking. In: 2008 IEEE Workshop on Applications of Computer Vision, pp. 1–7 (2008)

  9. Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999 (2002)

  10. Aherne, F.J., Thacker, N.A., Rockett, P.: The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4), 363–368 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(7), 179–188 (1936)

    Article  Google Scholar 

  12. Chen, H.-T., Liu, T.-L., Fuh, C.-S.: Probabilistic tracking with adaptive feature selection. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004. vol. 2, pp. 736–739 (2004)

  13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)

  15. Grabner, H., Sochman, J., Bischof, H., Matas, J.: Training sequential on-line boosting classifier for visual tracking. In: 19th International Conference on Pattern Recognition, 2008, pp. 1–4 (2008)

  16. Tian, M., Zhang, W., Liu, F.: On-line ensemble svm for robust object tracking. In: Proceedings of the 8th Asian conference on Computer vision—Volume Part I, ACCV’07, pp. 355–364. Springer, Berlin (2007)

  17. Medouakh, S., Boumehraz, M., Terki, N.: Improved object tracking via joint color-lpq texture histogram based mean shift algorithm. Signal Image Video Process. 12(3), 583–590 (2018)

    Article  Google Scholar 

  18. Chen, X., Zhang, M., Ruan, K., Guangzhu, X., Sun, S., Gong, C., Min, J., Lei, B.: Improved mean shift target tracking based on self-organizing maps. Signal Image Video Process. 8(1), 103–112 (2014)

    Article  Google Scholar 

  19. Phadke, G., Velmurugan, R.: Mean lbp and modified fuzzy c-means weighted hybrid feature for illumination invariant mean-shift tracking. Signal Image Video Process. 11(4), 665–672 (2017)

    Article  Google Scholar 

  20. Supreeth, H.S.G., Patil, C.M.: Efficient multiple moving object detection and tracking using combined background subtraction and clustering. Signal Image Video Process. (2018). https://doi.org/10.1007/s11760-018-1259-z

  21. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)

    Article  Google Scholar 

  22. Second IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. http://www.cvg.cs.rdg.ac.uk/pets2001/. Accessed 21 July 2003

  23. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zivkovic, Zoran, van der Heijden, Ferdinand: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  25. Emgucv software library. http://www.emgu.com/ (2008). Accessed 27 May 2012

  26. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

  27. McDonald, R.A., Hand, D.J., Eckley, I.A.: An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Fourth International Workshop on Multiple Classifier Systems, pp. 35–44. Springer (2003)

  28. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 771–780 (1999)

    Google Scholar 

  29. Turdu, D., Erdogan, H.: Improving gaussian mixture model based adaptive background modeling using hysteresis thresholding. In: Signal Processing and Communications Applications, 2007. SIU 2007, IEEE 15th, pp. 1 –4 (2007)

  30. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Saygin Topkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topkaya, I.S., Erdogan, H. Using spatial overlap ratio of independent classifiers for likelihood map fusion in mean-shift tracking. SIViP 13, 61–67 (2019). https://doi.org/10.1007/s11760-018-1328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1328-3

Keywords

Navigation