Skip to main content
Log in

CT scan contrast enhancement using singular value decomposition and adaptive gamma correction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose in this paper a new enhancement algorithm dedicated to dark computed tomography (CT) scan based on discrete wavelet transform with singular value decomposition (DWT–SVD) followed by adaptive gamma correction (AGC). Discrete wavelet transform (DWT) is considered to decompose the input dark CT image in four sub-bands. Singular value decomposition (SVD) is used in order to compute the corresponding singular value matrix of low–low (LL) sub-band image. The enhanced LL sub-band is determined by scaling the singular value matrix of original LL sub-band by an adequate correction factor, followed by inverse SVD. For a further contrast improvement, the new enhanced LL sub-band image is processed using an AGC algorithm. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed sub-bands to generate the final enhanced image. This proposed method has the advantage of being fully automatic and could be applied for dark input images with either low or moderate contrast. Different dark CT images are considered to compare the performance of our proposed method to three other enhancement techniques using both objective and subjective assessments. Simulation results show that our proposed algorithm consistently produces good contrast enhancement, with best brightness and edges details conservation and with minimum added distortions to the enhanced CT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lusic, H., Grinstaff, M.W.: X-ray computed tomography contrast agents. Chem. Rev. 113(3), 1641–1666 (2013)

    Article  Google Scholar 

  2. Al-Ameen, Z., Al-Ameen, S., Sulong, G.: Latest methods of image enhancement and restoration for computed tomography: a concise review. Appl. Med. Inform. 36(1), 1–12 (2015)

    Google Scholar 

  3. Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chouhan, R., Biswas, P.K., Jha, R.K.: Enhancement of low contrast images by internal noise-induced fourier coefficient rooting. SIViP 9(1), S255–S263 (2015)

    Article  Google Scholar 

  5. Jha, R.K., Chouhan, R.: Noise-induced contrast enhancementusing stochastic resonance on singular values. SIViP 8(2), 339–347 (2014)

    Article  Google Scholar 

  6. Verdenet, J., Cardot, J.C., Baud, M., Chervet, H., Duvernoy, J., Bidet, R.: Scintigraphic image contrast-enhancement techniques: global and local area histogram equalization. Eur. J. Nucl. Med. 6, 261–264 (1981)

    Article  Google Scholar 

  7. Kim, J.Y., Kim, L.S., Hwang, S.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11, 475–484 (2001)

    Article  Google Scholar 

  8. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatiallyadaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 44, 82–86 (1998)

    Article  Google Scholar 

  9. Kim, Y.T.: Contrast enhancement using brightness preserving bihistogram equalization. IEEE Trans. Consum. Electron. 43, 1–8 (1997)

    Article  Google Scholar 

  10. Ooi, C.H., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Consum. Electron. 56, 2543–2551 (2010)

    Article  Google Scholar 

  11. Wang, Y., Chen, Q., Zhang, B.M.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45, 68–75 (1999)

    Article  Google Scholar 

  12. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53, 1752–1758 (2007)

    Article  Google Scholar 

  13. Tiwari, M., Gupta, B.: Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering. In: IEEE Students’ Conference on Electrical, Electronics and Computer Science (2016)

  14. Sundaram, M., Ramar, K., Arumugam, N., Prabin, G.: Histogram-modified local contrast enhancement for mammogram images. Int. J. Biomed. Eng. Technol. 9(1), 60–71 (2012)

    Article  Google Scholar 

  15. Al-Juboori, R.A.: Contrast enhancement of the mammographic image using retinex with clahe methods. Iraqi J. Sci. 58(1B), 327–336 (2017)

    Google Scholar 

  16. Ganesan, B., Yamuna, G., Suman, S.K.: Hybrid contrast enhancement approach for medical image. In: International Journal of Computer Applications, Proceedings on National Conference on Emerging Trends in Information Communication Technology (2013)

  17. Yang, Y., Su, Z., Sun, L.: Medical image enhancement algorithm based on wavelet transform. IEEE Electron. Lett. 46(2), 120–121 (2010)

    Article  Google Scholar 

  18. Kaur, N., Singh, E.: Enhancement of medical images using histogram based hybrid technique. Int. J. Adv. Eng. Manag. Sci. 2(9), 1425–1432 (2016)

    Google Scholar 

  19. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. Consum. Electron. IEEE Trans. 45(1), 68–75 (1999)

    Article  Google Scholar 

  20. Atta, R., Ghanbari, M.: Low-contrast satellite images enhancement using discretecosine transform pyramid and singular value decomposition. IET Image Process. 7, 472–483 (2013)

    Article  Google Scholar 

  21. Demirel, H., Anbarjafari, G., Jahromi, M.N.: Image equalization based on singularvalue decomposition. In: 23rd IEEE International Symposium on Computer and. Information Sciences, pp. 1–5 (2008)

  22. Demirel, H., Ozcinar, C., Anbarjafari, G.: Satellite image contrast enhancementusing discrete wavelet transform and singular value decomposition. IEEE Geosci. Remote Sens. Lett. 7, 333–337 (2010)

    Article  Google Scholar 

  23. Bhandari, A.K., Kumar, A., Padhy, P.K.: Enhancement of low contrast satelliteimages using discrete cosine transform and singular value decomposition. World Acad. Sci. Eng. Technol. 55, 35–41 (2011)

    Google Scholar 

  24. Atta, R., Abdel-Kader, R.F.: Brightness preserving based on singular value decomposition forimage contrast enhancement. Optik 126, 799–803 (2015)

    Article  Google Scholar 

  25. Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, Pearson, Upper Saddle River (2008)

    Google Scholar 

  26. Bhandari, A.K., Kumar, A.K., Singh, G.K., Soni, V.: Dark satellite image enhancement using knee transfer function and gamma correction based on dwt-svd. Multidimens. Syst. Signal Process. 27(2), 453–476 (2016)

    Article  Google Scholar 

  27. Frosio, I.: Real time enhancement of cephalometric radiographies. In: 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro, number 3, pp. 972–975 (2006)

  28. Huang, S., Yeh, C.H.: Image contrast enhancement for preserving mean brightness without losing image features. ELSEVIER Eng. Appl. Artif. Intell. 26(5), 1487–1492 (2013)

    Article  Google Scholar 

  29. Somasundaram, K., Kalavathi, P.: Medical image contrast enhancement based on gamma correction. Int. J. Knowl. Manag. e-Learn. 3(1), 15–18 (2011)

    Google Scholar 

  30. Rahman, S., Rahman, M.M., Al Wadud, M.A., Al Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. IVP 35, 2–13 (2016)

    Google Scholar 

  31. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering: A Comprehensive Guide. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  32. Wang, Z., Bovik, A.L., Sheikh, H.R., Simoncelli, R.E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Celik, T.: Spatial mutual information and page rank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans. Image Process. 25(10), 4719–4728 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Deanship of Scientific Research at Majmaah University for funding this work under Project No. 37/109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi Kallel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallel, F., Sahnoun, M., Ben Hamida, A. et al. CT scan contrast enhancement using singular value decomposition and adaptive gamma correction. SIViP 12, 905–913 (2018). https://doi.org/10.1007/s11760-017-1232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1232-2

Keywords

Navigation