Purification and partial characterization of vinculin from chicken liver nuclear extract

Abstract

Vinculin is a well-known cytoskeletal protein and is a component of the integrin-mediated cell-matrix adhesion system. Recently, vinculin is also being reported from the nuclei from a number of organisms. However, there is no report yet on purification of nuclear vinculin from the native source of any organism. In the present study, by using western blotting, we show nuclear localization of vinculin in chicken liver. The chicken liver nuclear vinculin was purified to homogeneity and subsequently, the identity of vinculin was confirmed by peptide mass fingerprinting. Further, actin was co-immunoprecipitated with vinculin from chicken liver nuclear extract. Interestingly, the above immunoprecipitate (IP) demonstrated histone specific protease activity. Thus, the present study suggests plausible interaction of vinculin with actin and histone specific proteases in the chicken liver nuclei.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MALDI-TOF:

Matrix-Assisted Laser Desorption/Ionization-Time Of Flight

IP:

Immuno-precipitate

GDH:

Glutamate dehydrogenase

PMSF:

Phenazine methosulfonyl fluoride

DTT:

Dithiothreitol

CP:

Cellulose phosphate

DEAE:

Diethylaminoethyl

EDTA:

Edetate disodium

EGTA:

Ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

RIPA:

Radio-immuno-precipitation assay

CETH:

Chicken erythrocyte total histones

CLTH:

Chicken liver total histones

CLNE:

Chicken liver nuclear extract

References

  1. Akutsu S, Miyazaki J (2002) Biochemical and immunohistochemical studies on tropomyosin and glutamate dehydrogenase in the chicken liver. Zool Sci 19:275–286. https://doi.org/10.2108/zsj.19.275

    CAS  Article  Google Scholar 

  2. Alatortsev VE, Kramerova IA, Frolov MV, Lavrov SA, Westphal ED (1997) Vinculin gene is non-essential in drosophila melanogaster. FEBS Lett 413:197–201. https://doi.org/10.1016/s0014-5793(97)00901-0

    CAS  Article  PubMed  Google Scholar 

  3. Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586. https://doi.org/10.1038/nature02610

    CAS  Article  PubMed  Google Scholar 

  4. Borgon RA, Vonrhein C, Bricogne G, Bois PR, Izard T (2004) Crystal structure of human vinculin. Structure 12:1189–1197. https://doi.org/10.1016/j.str.2004.05.009

    CAS  Article  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Carisey A, Ballestrem C (2011) Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 90:157–163. https://doi.org/10.1016/j.ejcb.2010.06.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Edmondson DG, Smith MM, Roth SY (1996) Repression domain of the yeast global repressor tup1 interacts directly with histones h3 and h4. Genes Dev 10:1247–1259. https://doi.org/10.1101/gad.10.10.1247

    CAS  Article  PubMed  Google Scholar 

  8. Geiger B (1979) A 130 k protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205. https://doi.org/10.1016/0092-8674(79)90368-4

    CAS  Article  PubMed  Google Scholar 

  9. Gorski K, Carneiro M, Schibler U (1986) Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776. https://doi.org/10.1016/0092-8674(86)90519-2

    CAS  Article  PubMed  Google Scholar 

  10. Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52:504–510. https://doi.org/10.1016/0006-291x(73)90740-7

    CAS  Article  PubMed  Google Scholar 

  11. Hirsch MS, Law LY, Trinkaus-Randall V, Svoboda KK (1994) The intracellular distribution of vinculin and alpha 2 integrin in epithelial cells and chondrocytes. Scanning 16:275–284

    CAS  Article  Google Scholar 

  12. Kelpsch DJ, Tootle TL (2018) Nuclear actin: From discovery to function. Anat Rec (Hoboken) 301:1999–2013. https://doi.org/10.1002/ar.23959

    CAS  Article  Google Scholar 

  13. Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P (2005) Actin and hnrnp u cooperate for productive transcription by rna polymerase ii. Nat Struct Mol Biol 12:238–244. https://doi.org/10.1038/nsmb904

    CAS  Article  PubMed  Google Scholar 

  14. Kuroda M, Wada H, Kimura Y, Ueda K, Kioka N (2017) Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes. J Cell Sci 130:989–1002. https://doi.org/10.1242/jcs.194779

    CAS  Article  PubMed  Google Scholar 

  15. Legerstee K, Geverts B, Slotman JA, Houtsmuller AB (2019) Dynamics and distribution of paxillin, vinculin, zyxin and vasp depend on focal adhesion location and orientation. Sci Rep 9:10460. https://doi.org/10.1038/s41598-019-46905-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Marquez MG, Del Carmen Fernandez-Tome M, Favale NO, Pescio LG, Sterin-Speziale NB (2008) Bradykinin modulates focal adhesions and induces stress fiber remodeling in renal papillary collecting duct cells. Am J Physiol Renal Physiol 294:F603–F613. https://doi.org/10.1152/ajprenal.00234.2007

    CAS  Article  PubMed  Google Scholar 

  17. Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71:755–781. https://doi.org/10.1146/annurev.biochem.71.110601.135507

    CAS  Article  PubMed  Google Scholar 

  18. Otto JJ (1990) Vinculin. Cell Motil Cytoskeleton 16:1–6. https://doi.org/10.1002/cm.970160102

    CAS  Article  PubMed  Google Scholar 

  19. Panda P, Suar M, Singh D, Pandey SM, Chaturvedi MM, Purohit JS (2011) Characterization of nuclear glutamate dehydrogenase of chicken liver and brain. Protein Pept Lett 18:1194–1203. https://doi.org/10.2174/092986611797642698

    CAS  Article  PubMed  Google Scholar 

  20. Panda P, Chaturvedi MM, Panda AK, Suar M, Purohit JS (2013) Purification and characterization of a novel histone h2a specific protease (h2asp) from chicken liver nuclear extract. Gene 512:47–54. https://doi.org/10.1016/j.gene.2012.09.098

    CAS  Article  PubMed  Google Scholar 

  21. Panigrahi AK, Tomar RS, Chaturvedi MM (2003) Mechanism of nucleosome disruption and octamer transfer by the chicken swi/snf-like complex. Biochem Biophys Res Commun 306:72–78. https://doi.org/10.1016/s0006-291x(03)00906-9

    CAS  Article  PubMed  Google Scholar 

  22. Peng X, Nelson ES, Maiers JL, DeMali KA (2011) New insights into vinculin function and regulation. Int Rev Cell Mol Biol 287:191–231. https://doi.org/10.1016/B978-0-12-386043-9.00005-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Purohit JS, Tomar RS, Panigrahi AK, Pandey SM, Singh D, Chaturvedi MM (2013) Chicken liver glutamate dehydrogenase (gdh) demonstrates a histone h3 specific protease (h3ase) activity in vitro. Biochimie 95:1999–2009. https://doi.org/10.1016/j.biochi.2013.07.005

    CAS  Article  PubMed  Google Scholar 

  24. Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben-Ze’ev A (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141:1433–1448. https://doi.org/10.1083/jcb.141.6.1433

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Sinha S, Verma S, Chaturvedi MM (2016) Differential expression of swi/snf chromatin remodeler subunits brahma and brahma-related gene during drug-induced liver injury and regeneration in mouse model. DNA Cell Biol 35:373–384. https://doi.org/10.1089/dna.2015.3155

    CAS  Article  PubMed  Google Scholar 

  26. Sollner-Webb B, Camerini-Otero RD, Felsenfeld G (1976) Chromatin structure as probed by nucleases and proteases: Evidence for the central role of histones h3 and h4. Cell 9:179–193. https://doi.org/10.1016/0092-8674(76)90063-5

    CAS  Article  PubMed  Google Scholar 

  27. Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM (2004) Vinculin modulation of paxillin-fak interactions regulates erk to control survival and motility. J Cell Biol 165:371–381. https://doi.org/10.1083/jcb.200308011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Tiwari AK, Panda P, Purohit JS (2014) Evaluation of sub-cellular distribution of glutamate dehydrogenase (gdh) in drosophila melanogaster larvae. Acta Histochem 116:297–303. https://doi.org/10.1016/j.acthis.2013.08.007

    CAS  Article  PubMed  Google Scholar 

  29. Weller PA, Ogryzko EP, Corben EB, Zhidkova NI, Patel B, Price GJ, Spurr NK, Koteliansky VE, Critchley DR (1990) Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Natl Acad Sci U S A 87:5667–5671. https://doi.org/10.1073/pnas.87.15.5667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal Biochem 118:197–203. https://doi.org/10.1016/0003-2697(81)90179-2

    CAS  Article  PubMed  Google Scholar 

  31. Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460. https://doi.org/10.1016/j.tcb.2006.07.004

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was supported by research grants from DST (EMR/2016/002571) and Delhi University (R&D grant 2016-17) for the present work. PP and MB acknowledge Kalinga Institute of Industrial Technology Bhubaneswar, Orissa and CSIR, India, respectively for fellowships.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jogeswar S. Purohit.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The authors declare no ethical considerations to apply.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panda, P.P., Bohot, M., Chaturvedi, M.M. et al. Purification and partial characterization of vinculin from chicken liver nuclear extract. Biologia (2021). https://doi.org/10.1007/s11756-021-00691-3

Download citation

Keywords

  • Actin
  • Histone specific proteases
  • Nuclear localization
  • Vinculin