Microhabitats - integrative environmental factors for species communities of Coleoptera in the karst landscape

Abstract

Recent studies have emphasized that some trogloxene species (species that are not specialized/obligate cave dwellers), were frequent in caves, and they did not occur randomly at the entrance of caves. Our research in a forested karst landscape in the Carpathians endorses and completes the previous results from different geographic zones. In addition to the previous studies, we analyzed the differences of beetle communities in various microhabitats (cave, microcave, limestone outcrops, riparian-sylvan and forest litter) in a protected karst landscape. We aimed to observe how the micorhabitats influenced the general structure and faunal richness of a karst landscape and what differences exists between species communities of different microhabitats. We observed significant differences in the trogloxene species associations between cave and microcave and the other microhabitats. An increase in the richness of trogloxene species was observed both in the cave and in the microcave, from April to July, in different associations of species and functional trophic categories. We identified species belonging to eight functional trophic categories, distributed differently among microhabitats. A comparison of the species richness and species communities between analyzed microhabitats is presented. The influence of the microhabitats on the species diversity and the species community dynamics is pointed out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Absolon K (1915) Bericht über höhlenbewohnende Staphyliniden der dinarischen und angrenzenden Karstgebiete. Koleopterol Rundsch 11/12:132–151

    Google Scholar 

  2. Bak T (2014) Triangular method of spatial sampling. Statistics in transition. new series 15(1):9–22

    Google Scholar 

  3. Bento de DM, Ferreira RL, Prous X, Souiza-Silva M, Bellini BC, Vasconcello A (2016) Seasonal variations in cave invertebrate communities in the semiarid Caatinga, Brazil. J Caves Karst Stud 78(2):61–71. https://doi.org/10.4311/2015LSC0111

    Article  Google Scholar 

  4. Betz O, Irmler U, Klimaszewski J (2018) Biology of rove beetles (Staphylinidae). Life history, evolution, ecology and distribution. Springer, New York

  5. Bleahu M, Decu V, Negrea Șt, Pleșa I, Povară I, Viehmann I (1976) Peșteri din Româmia. Editura științifică și enciclopedică, Bucharest

    Google Scholar 

  6. Bousquet Y (1990) A review of North American species of Rhizophagus Herbst and a revision of the Nearctic members of subgenus Anomophagus Can. Entomologia 22:131–171

    Google Scholar 

  7. Casale A (1975) Ciclo biologico e morfologia preimmaginale di Coleoptera Staphylinoidea delle famiglie Leptinidae e Catopidae. Redia 56:199–230

    Google Scholar 

  8. Chandler DS (2010) 11.26. Anthicidae Latreille, 1819. In: Leschen RAB, Beutel RG, Lawrence JF (volume eds) Coleoptera, beetles, Volume 2: Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). In: Kristensen NP, Beutel RG (eds) Handbook of zoology. A natural history of the phyla of the animal kingdom. IV. Arthropoda: Insecta. Part 38. Walter de Gruyter, Berlin, New York, pp 729–741

  9. Chelini MC, Willemart RH (2011) Caves as a Winter Refuge by a Neotropical Harvestman. J Insect Behav 24:393–398

    Article  Google Scholar 

  10. Crouau-Roy B, Crouau Y, Ferre C (1992) Dynamic and temporal structure of the troglobitic beetle Speonomus hydrophilus (Coleoptera: Bathysciinae). Ecography 15:12–18

    Article  Google Scholar 

  11. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  12. Culver DC, Pipan T (2014) Shallow subterranean habitats. Ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  13. D’Aguilar J, Balachowsky AS, Charras A, Davatchi A, Descarpenteries A, Hoffman A, Hurpin B, Jourdheuil P, Labeyrie V (1962) Coléoptères: Caraboidaea, Staphylinoidea, Hirophiloidea, Scarabaeoidea, Dascilloidea, Cantharoidea, Bostrychoidea, Cucujoidea, Phytophagoidea (Cerambycidae et Bruchidae). In: Balachowsky AS (ed) Entomologie appliquée à l’agriculture (Traité), I, 1. Masson et Cie Édit, Paris, pp 3–564

    Google Scholar 

  14. Decu V, Juberthie C, Nitzu E (1999) Coleoptera (varia). In: Juberthie C, Decu V (eds) Encyclopaedia biospeologica. Fabbro, FranceSaint-Girons, pp 1153–1165

    Google Scholar 

  15. Gavish Y, Giladi I, Ziv Y (2019) Partitioning species and environmental diversity in fragmented landscapes: do the alpha, beta and gamma components match? Biodivers Conserv 28:769–786

    Article  Google Scholar 

  16. Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities: from Soil to Cave. Acta Oecol (Montrouge) 19(3):205–213

    Article  Google Scholar 

  17. Good JA, Giller PS (1988) A contribution to the check-list of Staphylinidae (Coleoptera) of potential importance in the integrated protection of cereal and grass. In: Cavalloro R, Sunderland KD (eds) Integrated crop protection of cereals. CRC Press, Boca Raton, pp 81–98

    Google Scholar 

  18. Haľková B, Tuf IV, Tajovsky K, Mock A (2020) Suberranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe. ZooKeys 930:117–137

    Article  Google Scholar 

  19. Holmberg RG, Angerilli NP, La Case LJ (1984) Overwintering aggregations of Leioburnum paessleri in caves and mines (Arachnida, Opiliones). J Arachnol 33:110–123

    Google Scholar 

  20. Kočárek P (2003) Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur J Soil Biol 39:31–45

    Article  Google Scholar 

  21. Krebs CJ (1989) Ecological methodology. Harper Collins Publishers, New York

  22. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  23. Lieutier F, Day KR, Battisti A, Grégorie JC, Evans HF (2007) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Wien

    Google Scholar 

  24. Link WA, Sauer JR (2002) Estimating population change from count data: application to the North American Breeding Bird Survey. Ecol Appl 82:58–268

    Google Scholar 

  25. Ludwig JA, Reynolds JF (1988) Statistical Ecology. A primer on methods and computing. Willey, New York

    Google Scholar 

  26. Lunghi E, Manenti R, Ficetola GF (2014) Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol (Montrouge) 55:29–35

    Article  Google Scholar 

  27. Mammola S, Isaia M (2016) The ecological niche of a specialized subterranean spider. Invertebr Biol 13(1):20–30

    Article  Google Scholar 

  28. Mammola S, Leroy B (2018) Applying species distribution models to caves and other subterranean habitats. Ecography 41:1194–2018. https://doi.org/10.1111/ecog.03464

    Article  Google Scholar 

  29. Mammola S, Piano E, Giachino PM, Isaia M (2015) Seasonal dynamics and micro-climatic preference of two Alpine endemic hypogean beetles. Int J Speleol 44(3):239–249. https://doi.org/10.5038/1827-806X.44.3.3

    Article  Google Scholar 

  30. Mammola S, Giachino PM, Piano E, Jones A, Barberis M, Badino G, Isaia M (2016a) Ecology and sampling techniques of an understudied subterranean habitat: The Milieu Souterrain Superficiel (MSS). Sci Nat 103:88. https://doi.org/10.1007/s00114-016-1413-9

    CAS  Article  Google Scholar 

  31. Mammola S, Piano E, Isaia M (2016b) Step back! Niche dynamics in cave-dwelling predators. Acta Oecol (Montrouge) 75:35–42

    Article  Google Scholar 

  32. Manenti R, Siesa ME, Ficetola F (2013) Odonata occurence in caves: active or accidentals? A new case of study. J Cave Karst Stud 75(3):205–209. https://doi.org/10.4311/20121.SC0281

    Article  Google Scholar 

  33. Mc Aleece N (1997) Biodiversity Professional Software v. 2. The Natural History Museum/Scottish Association for Marine Science, London

    Google Scholar 

  34. Mugnai R, Messana G, Di Lorenzo T (2015) The hyporheic zone and its functions: revision and research status in Neotropical regions. Braz J Biol Sci 75(3):524–534. https://doi.org/10.1590/1519-6984.15413

    CAS  Article  Google Scholar 

  35. Nae A (2015) Synaphris lehtineni, Marusik, Gnelista & Kovliuk, 2005 (Synaphridae, Araneae) – new record for the Romanian fauna. Trav Inst Spéol «Émile Racovitza» 54:27–31

  36. Nageleisen LM (2009) Forest insect studies: Methods and techniques key considerations for standardization. In: Christophe B, Nageleisen LM (eds). An overview of the reflections of the “Entomological Forest Inventories”, Les dossiers foresties 19, Paris

  37. Niţu E (2008) Species diversity of the beetle fauna, a sensitive parameter for ecological monitoring. Maramureş Mountains Nature Park (Romania). Transylv Rev Syst Ecol Res 5:143–154

  38. Nițu E, Nae A, Băncilă R, Popa I, Giurginca A, Plăiașu R, Nae I (2011) Arthropod community structure and environmental correlates in the mesovoid shallow substratum (MSS) of scree habitat in the “Piatra Craiului” National Reserve, Romania. In: Murariu D,  Adam C, Chişamera G, Iorgu E, Popa LO, Popa OP (eds) Annual Zoological Congress of “Grigore Antipa” Museum - Book of abstracts. “Grigore Antipa” National Museum of Natural History, Bucharest, Romania, p 88

  39. Nitzu E (2001) Edaphic and subterranean Coleoptera from the Dobrogean karstic areas. A zoogeographic approach. Mitt Hamb Zool Mus Inst 98:131–169

  40. Nitzu E (2013) The Cholevinae of Romania (exclusive of Leptodirini) (Coleoptera, Leiodidae) with special reference to the hypogeal records. Zootaxa 3620(3):351–378

    Article  Google Scholar 

  41. Nitzu E (2016) Scree habitat as ecological refuge: A study of case on the Carpathian endemic species Platynus glacialis and Pterostichus pilosus wellensii (Coleoptera, Carabidae) in their first case of co-occurrence in the rock debris. North-West J Zool 12(1):33–39

    Google Scholar 

  42. Nitzu E (2017) An update of the Romanian fauna of Coleoptera: new records and notes on rare and litte known species. Trav Inst Spéol «Émile Racovitza» 56:25–32

  43. Nitzu E, Olenici N (2009) The first study on the beetle fauna in the Giumalau spruce primeval forest (Eastern Carpathians, Romania), mainly based on quantitative analysis on terrestrial and saproxylic species. In: Buse J, Alexander KNA, Ranius T, Assmann (eds) The saproxylic beetles – their role and diversity in European woodland and tree habitats. Proceedings of 5th International conference on saproxylic beetles, Pensoft, Sofia-Moscow-Lueneburg, pp 27–48

  44. Nitzu E, Nae A, Popa I (2008) The soil beetle fauna (edaphic Coleoptera) - a sensitive indicator of evolution and conservation of ecosysems. A study on altitudinal gradient in the Rodnei Mountains Biosphere Reserve (the Carpathians). In: Makarov SE, Dimitrijevic RN (eds) Advances in Arachnology and Developmental Biology. Monograpgh dedicated to Acad. Prof. Dr. B.P.M. Curcic. Vienna-Belgrade-Sofia, Monographs, 12, pp 405–417

  45. Nitzu E, Nae A, Bancila R, Popa I, Giurginca A, Plaiasu R (2014) Scree habitats: ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst Biodivers 12(1):65–77

    Article  Google Scholar 

  46. Nitzu E, Giurginca A, Nae A, Popa I, Baba S, Meleg IN, Vlaicu M (2016) The catalogue of caves with endemic cavernicolous arthropod fauna of Romaia. Trav Inst Spéol «Émile Racovitza» 55:3–62

  47. Nitzu E, Vlaicu M, Giurginca A, Meleg IN, Popa I, Nae A, Baba S (2018) Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int J Speleol 47(1):43–52. https://doi.org/10.5038/1827-806X.47.1.2147

    Article  Google Scholar 

  48. Novak T, Lipovsek S, Senčič L, Pabst MA, Janžekovič F (2004) Adaptations in phalangiid harvestmen Gyas annulatus and G. titanus on their preferred water current adjacent habitats. Acta Oecol 26:45–53

    Article  Google Scholar 

  49. Ohsawa M (2010) Beetle families as indicators of Coleopteran diversity in forests: a study using Malaise traps in the central mountainous region of Japan. J Insect Conserv 14:479–484. https://doi.org/10.1007/s10841-010-9276-4

    Article  Google Scholar 

  50. Peck SB, Thayer MK (2003) The cave-inhabiting rove beetles of the United States (Coleoptera, Staphylinidae: excluding Aleocharinae and Pselaphinae): Diversity and distributions. J Cave Karst Stud 65:3–8

    Google Scholar 

  51. Pipan T, Culver D (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14

    Article  Google Scholar 

  52. Popa I, Šustr V (2016) Collembola (Hexapoda) from the Mehedinți Mounains (SW Carpathians, Romania), with four new records for the Romanian fauna. Trav Inst Spéol «Émile Racovitza» 55:119–127

  53. Rendoš M, Mock A, Jászay T (2012) Spatial and temporal dynamics of invertebrates dwelling karstic mesovoid shallow substratum of Sivec National Nature Reserve (Slovakia), with emphasis on Coleoptera. Biologia 67:1143–1151. https://doi.org/10.2478/s11756-012-0113-y

    Article  Google Scholar 

  54. Ross H, Arnett M, Thomas CT, Skelley PE, Frank J (2002) “American Beetles” Polyphaga: Scarabeoidea through Curculionidea. Florida, pp 457–462

  55. Shear WA (2007) Cave milipeds of the United States. V. The genus Idagona Buckett & Gardner (Chordeumatida, Conotylidae, Idagoninae). Zootaxa 1463:1–12

  56. Sket B (2004) The cave hygropetric - A little known habitat and its inhabitants. Arch Hydrobiol 160(3):413–425

    Article  Google Scholar 

  57. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 4(2):1549 – 1563

  58. Szujecki A (1987) Ecology of forest insects. Junk Publishers, The Hague, D.W

    Google Scholar 

  59. Tercafs R (2000) A study of the parameters triggering the exit of the trogloxene species Scoliopteryx libatrix L. (Lepidoptera: Noctuidae) at the end of winter ecophase sites of oviposition, egg batches characteristics and subsocial behavior. Mém Biospéol 27:31–139

    Google Scholar 

  60. Thieren Y, Dethier M (2006) Les Coléoptères Leiodidae des grottes de Ramioul (commune de Flémalle, province de Liège). Bulletin des Chercheurs de la Wallonie 45:117–127

    Google Scholar 

  61. Tobin B, Hutchins B, Schwart B (2013) Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. Int J Speleol 42(3):203–214

    Article  Google Scholar 

Download references

Acknowledgements

This study was developed during the “Multidisciplinary Study on the Karst Regions of Romania” program, project 1 of the Emile Racovitza Institute of Speleology, “The Microhabitats of the Karst Landscape and Their Community Species Associations” of the Romanian Academy. We thank our colleagues Dr. Augustin Nae, Dr. Ionut Popa, Dr. Andrei Giurginca, Drd. Anca Dragu and Dr. Alexandra Hillebrand-Voiculescu for their mutual support in field expeditions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugen Nitzu.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 344 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nitzu, E. Microhabitats - integrative environmental factors for species communities of Coleoptera in the karst landscape. Biologia (2021). https://doi.org/10.1007/s11756-021-00683-3

Download citation

Keywords

  • Carpathians
  • Coleoptera
  • Microhabitats
  • Monthly variations
  • Trogloxene species
  • Trophic categories