Abstract
This paper introduces area-level compositional mixed models by applying transformations to a multivariate Fay–Herriot model. Small area estimators of the proportions of the categories of a classification variable are derived from the new model, and the corresponding mean squared errors are estimated by parametric bootstrap. Several simulation experiments designed to analyse the behaviour of the introduced estimators are carried out. An application to real data from the Spanish Labour Force Survey of Galicia (north-west of Spain), in the first quarter of 2017, is given. The target is the estimation of domain proportions of people in the four categories of the variable labour status: under 16 years, employed, unemployed and inactive.
This is a preview of subscription content, access via your institution.











References
Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London
Arima S, Bell WR, Datta GS, Franco C, Liseo B (2017) Multivariate Fay–Herriot Bayesian estimation of small area means under functional measurement error. J R Stat Soc Ser A 180(4):1191–1209
Benavent R, Morales D (2016) Multivariate Fay–Herriot models for small area estimation. Comput Stat Data Anal 94:372–390
Berg E, Fuller WA (2012) Estimators of error covariance matrices for small area prediction. Comput Stat Data Anal 56:2949–2962
Berg EJ, Fuller WA (2014) Small area prediction of proportions with applications to the Canadian Labour Force Survey. J Surv Stat Methodol 2:227–256
Boubeta M, Lombardía MJ, Morales D (2016) Empirical best prediction under area-level Poisson mixed models. TEST 25:548–569
Boubeta M, Lombardía MJ, Morales D (2017) Poisson mixed models for studying the poverty in small areas. Comput Stat Data Anal 107:32–47
Chambers R, Dreassi E, Salvati N (2014) Disease mapping via negative binomial regression M-quantiles. Stat Med 33:4805–4824
Chambers R, Salvati N, Tzavidis N (2016) Semiparametric small area estimation for binary outcomes with application to unemployment estimation for Local Authorities in the UK. J R Stat Soc Ser A 179:453–479
Chen S, Lahiri P (2012) Inferences on small area proportions. J Indian Soc Agric Stat 66(1):121–124
Datta GS, Fay RE Ghosh M (1991) Hierarchical and empirical Bayes multivariate analysis in small area estimation. In: Proceedings of Bureau of the census 1991 annual research conference, U. S. Bureau of the Census, Washington, DC, pp 63–79
Datta GS, Ghosh M, Nangia N, Natarajan K (1996) Estimation of median income of four-person families: a Bayesian approach. In: Berry DA, Chaloner KM, Geweke JM (eds) Bayesian analysis in statistics and econometrics. Wiley, New York, pp 129–140
Dreassi E, Ranalli MG, Salvati N (2014) Semiparametric M-quantile regression for count data. Stat Methods Med Res 23:591–610
Egozcue JJ, Pawlowsky-Glahn V (2019) Compositional data: the sample space and its structure. TEST 28(3):599–638
Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300
Esteban MD, Morales D, Pérez A, Santamaría L (2012) Small area estimation of poverty proportions under area-level time models. Comput Stat Data Anal 56:2840–2855
Fabrizi E, Ferrante MR, Trivisano C (2016) Hierarchical Beta regression models for the estimation of poverty and inequality parameters in small areas. In: Pratesi Monica (ed) Analysis of poverty data by small area methods. Wiley, New York
Farrell PJ (2000) Bayesian inference for small area estimation. Sankhya Ser B 62(3):402–416
Fay RE (1987) Application of multivariate regression of small domain estimation. In: Platek R, Rao JNK, Särndal CE, Singh MP (eds) Small area statistics. Wiley, New York, pp 91–102
Ferrante MR, Trivisano C (2010) Small area estimation of the number of firms’ recruits by using multivariate models for count data. Surv Methodol 36(2):171–180
Ghosh M, Nangia N, Kim D (1996) Estimation of median income of four-person families: a Bayesian time series approach. J Am Stat Assoc 91:1423–1431
González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2007) Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Comput Stat Data Anal 51:2720–33
González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2008a) Analytic and bootstrap approximations of prediction errors under a multivariate Fay–Herriot model. Comput Stat Data Anal 52:5242–5252
González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2008b) Bootstrap mean squared error of small-area EBLUP. J Stat Comput Simul 78:443–462
Hobza T, Morales D (2016) Empirical best prediction under unit-level logit mixed models. J Off Stat 32(3):661–669
Hobza T, Santamaría L, Morales D (2018) Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models. TEST 27(2):270–294
Larsen MD (2003) Estimation of small-area proportions using covariates and survey data. J Stat Plan Inference 112:89–98
Liu B, Lahiri P (2017) Adaptive Hierarchical Bayes estimation of small area proportions. Calcutta Stat Assoc Bull 69(2):150–164
López-Vizcaíno E, Lombardía MJ, Morales D (2013) Multinomial-based small area estimation of labour force indicators. Stat Model 13(2):153–178
López-Vizcaíno E, Lombardía MJ, Morales D (2015) Small area estimation of labour force indicators under a multinomial model with correlated time and area effects. J R Stat Soc Ser A 178(3):535–565
Marhuenda Y, Molina I, Morales D (2013) Small area estimation with spatio-temporal Fay–Herriot models. Comput Stat Data Anal 58:308–325
Marhuenda Y, Morales D, Pardo MC (2014) Information criteria for Fay–Herriot model selection. Comput Stat Data Anal 70:268–280
Molina I, Saei A, Lombardía MJ (2007) Small area estimates of labour force participation under multinomial logit mixed model. J R Stati Soc Ser A 170:975–1000
Morales D, Pagliarella MC, Salvatore R (2015) Small area estimation of poverty indicators under partitioned area-level time models. SORT Stat Oper Res Trans 39(1):19–34
Pawlowsky-Glahn V, Buccianti A (eds) (2011) Compositional data analysis. Wiley, Chichester
Rao JNK (2003) Small area estimation. Wiley, New-York
Rao JNK, Molina I (2015) Small area estimation, 2nd edn. Wiley, Hoboken
Saei A, Chambers R (2003) Small area estimation under linear an generalized linear mixed models with time and area effects. S3RI Methodology Working Paper M03/15, Southampton Statistical Sciences Research Institute
Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer, Berlin
Scealy JL, Welsh AH (2017) A directional mixed effects model for compositional expenditure data. J Am Stat Assoc 112(517):24–36
Slud EV, Maiti T (2006) Mean-squared error estimation in transformed Fay–Herriot models. J R Stat Soc Ser B 68(2):239–257
Souza DB, Moura FAS (2016) Multivariate Beta regression with applications in small area estimation. J Off Stat 32:747–768
Tzavidis N, Ranalli MG, Salvati N, Dreassi E, Chambers R (2015) Robust small area prediction for counts. Stat Methods Med Res 24(3):373–395
Zhang L, Chambers R (2004) Small area estimates for cross-classifications. J R Stat Soc Ser B 66(2):479–496
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by the Instituto Galego de Estatística, by the grants PGC2018-096840-B-I00 and MTM2017-82724-R of the Spanish Ministerio de Economía y Competitividad and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and Centro Singular de Investigación de Galicia ED431G/01), all of them through the ERDF.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Esteban, M.D., Lombardía, M.J., López-Vizcaíno, E. et al. Small area estimation of proportions under area-level compositional mixed models. TEST 29, 793–818 (2020). https://doi.org/10.1007/s11749-019-00688-w
Received:
Accepted:
Published:
Issue Date:
Keywords
- Labour Force Survey
- Small area estimation
- Area-level models
- Compositional data
- Bootstrap
- Labour status
Mathematics Subject Classification
- 62E30
- 62J12