Skip to main content

Advertisement

Log in

Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We investigate the errors in covariates issues in a generalized partially linear model. Different from the usual literature (Ma and Carroll in J Am Stat Assoc 101:1465–1474, 2006), we consider the case where the measurement error occurs to the covariate that enters the model nonparametrically, while the covariates precisely observed enter the model parametrically. To avoid the deconvolution type operations, which can suffer from very low convergence rate, we use the B-splines representation to approximate the nonparametric function and convert the problem into a parametric form for operational purpose. We then use a parametric working model to replace the distribution of the unobservable variable, and devise an estimating equation to estimate both the model parameters and the functional dependence of the response on the latent variable. The estimation procedure is devised under the functional model framework without assuming any distribution structure of the latent variable. We further derive theories on the large sample properties of our estimator. Numerical simulation studies are carried out to evaluate the finite sample performance, and the practical performance of the method is illustrated through a data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apanasovich TV, Carroll RJ, Maity A (2009) SIMEX and standard error estimation in semiparametric measurement error models. Electron J Stat 3:318–348

    Article  MathSciNet  Google Scholar 

  • Buonaccorsi JP (2010) Measurement error: models, methods, and applications. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Carroll RJ, Fan J, Gijbels I, Wand MP (1995) Generalized partially linear single-index models. J Am Stat Assoc 92:477–489

    Article  MathSciNet  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu C (2006) Measurement error in nonlinear models: a modern perspective, 2nd edn. CRC Press, London

    Book  Google Scholar 

  • Huang Y, Wang CY (2001) Consistent functional methods for logistic regression with errors in covariates. J Am Stat Assoc 96:1469–1482

    Article  MathSciNet  Google Scholar 

  • Jiang F, Ma Y (2018) A spline-assisted semiparametric approach to nonparametric measurement error models. arXiv:1804.00793

  • Liang H, Ren H (2005) Generalized partially linear measurement error models. J Comput Graph Stat 14:237–250

    Article  MathSciNet  Google Scholar 

  • Liang H, Thurston SW (2008) Additive partial linear models with measurement errors. Biometrika 95:667–678

    Article  MathSciNet  Google Scholar 

  • Liang H, Qin Y, Zhang X, Ruppert D (2009) Empirical likelihood-based inferences for generalized partially linear models. Scand Stat Theory Appl 36:433–443

    Article  MathSciNet  Google Scholar 

  • Liu L (2007) Estimation of generalized partially linear models with measurement error using sufficiency scores. Stat Probab Lett 77:1580–1588

    Article  MathSciNet  Google Scholar 

  • Liu J, Ma Y, Zhu L, Carroll RJ (2017) Estimation and inference of error-prone covariate effect in the presence of confounding variables. Electron J Stat 11:480–501

    Article  MathSciNet  Google Scholar 

  • Ma Y, Carroll RJ (2006) Locally efficient estimators for semiparametric models with measurement error. J Am Stat Assoc 101:1465–1474

    Article  MathSciNet  Google Scholar 

  • Ma Y, Tsiatis AA (2006) Closed form semiparametric estimators for measurement error models. Stat Sin 16:183–193

    MathSciNet  MATH  Google Scholar 

  • Stefanski LA, Carroll RJ (1985) Covariate measurement error in logistic regression. Ann Stat 13:1335–1351

    Article  MathSciNet  Google Scholar 

  • Stefanski LA, Carroll RJ (1987) Conditional scores and optimal scores in generalized linear measurement error models. Biometrika 74:703–716

    MathSciNet  MATH  Google Scholar 

  • Tsiatis AA, Ma Y (2004) Locally efficient semiparametric estimators for functional measurement error models. Biometrika 91:835–848

    Article  MathSciNet  Google Scholar 

  • Xu K, Ma Y (2015) Instrument assisted regression for errors in variables models with binary response. Scand J Stat 42:104–117

    Article  MathSciNet  Google Scholar 

  • Yi G, Ma Y, Spiegelman D, Carroll RJ (2015) Functional and structural methods with mixed measurement error and misclassification in covariates. J Am Stat Assoc 110:681–696

    Article  MathSciNet  Google Scholar 

  • Yu Y, Ruppert D (2012) Penalized spline estimation for partially linear single-index models. J Am Stat Assoc 97:1042–1054

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangren Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang’s research was supported by the National Nature Science Foundation of China Grants 11471086 and 11871173, the National Social Science Foundation of China Grant 16BTJ032, the National Statistical Scientific Research Center Projects 2015LD02, and the Fundamental Research Funds for the Central Universities 19JNYH08. Ma’s work is partially supported by NSF and NIH.

Appendix

Appendix

1.1 A.1 Proof of Theorem 1

From the definitions of \(\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i,\mathbf{Z}_i, {\varvec{\delta }}, g)\) and \({\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }},{\varvec{\gamma }})\), we have

$$\begin{aligned} E\{\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, g)| X_i,\mathbf{Z}_i\}= & {} \mathbf{0},\\ E_a\{{\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)| X_i,\mathbf{Z}_i\}= & {} \mathbf{0}, \end{aligned}$$

where \(_a\) here and throughout the text stands for “approximate,” and \(E_a\) indicates the expectation calculated with \(g(\cdot )\) replaced by the approximate model \(\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}_0\). Taking another expectation, we get

$$\begin{aligned} E\{\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, g)\}= & {} \mathbf{0}, \\ E_a\{{\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)\}= & {} \mathbf{0}. \end{aligned}$$

Using Condition \((\mathrm {C}6)\), we further get

$$\begin{aligned} E\{\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)\}= & {} o(1),\\ E\{{\mathbf{S}_{\mathrm{res}}}_2^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)\}= & {} o(1), \end{aligned}$$

component-wise. Condition \((\mathrm {C}7)\) ensures that \([E\{\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, {\varvec{\gamma }})\}^{\mathrm{T}}, E\{{\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, {\varvec{\gamma }})\}^{\mathrm{T}}]^{\mathrm{T}}\) is invertible near its zero \(\varvec{\theta }^*\) as a vector function of \(\varvec{\theta }\), and the first derivative of the inverse function is bounded in the neighborhood of \(\varvec{\theta }^*\). Therefore, \(\Vert \varvec{\theta }^* - \varvec{\theta }_0\Vert _2 = o_p(1)\). On the other hand, since

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, \widehat{{\varvec{\delta }}}_n, \widehat{{\varvec{\gamma }}}_n)= & {} \mathbf{0},\\ \frac{1}{n}\sum _{i=1}^{n}{\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, \widehat{{\varvec{\delta }}}_n, \widehat{{\varvec{\gamma }}}_n)= & {} \mathbf{0}, \end{aligned}$$

we have

$$\begin{aligned} E\{\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, \widehat{{\varvec{\delta }}}_n,\widehat{{\varvec{\gamma }}}_n)\}= & {} o(1),\\ E\{{\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, \widehat{{\varvec{\delta }}}_n,\widehat{{\varvec{\gamma }}}_n)\}= & {} o(1) \end{aligned}$$

element-wise. Using exactly the same argument as above, we can also obtain \(\Vert \widehat{\varvec{\theta }}_n -\varvec{\theta }^*\Vert _2=o_p(1)\). Hence, combining the two results, we get \(\Vert \widehat{\varvec{\theta }}_n - \varvec{\theta }_0\Vert _2=o_p(1)\). \(\square \)

1.2 A.2 Proof of Theorem 2

We first write

$$\begin{aligned} \mathbf{0}= & {} n^{-1/2}\sum _{i=1}^n\mathbf{S}_{\mathrm{eff}}^*\{Y_i, W_i,\mathbf{Z}_i,\widehat{{\varvec{\delta }}}_n,\widehat{{\varvec{\gamma }}}_n(\widehat{{\varvec{\delta }}}_n)\}\\= & {} \mathbf{T}_1 + \mathbf{T}_2(\widetilde{{\varvec{\delta }}}_n)\sqrt{n}(\widehat{{\varvec{\delta }}}_n-{\varvec{\delta }}_0), \end{aligned}$$

where

$$\begin{aligned} \mathbf{T}_1= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\},\\ \mathbf{T}_2({\varvec{\delta }})= & {} \mathbf{T}_{21}({\varvec{\delta }}) +\mathbf{T}_{22}({\varvec{\delta }})\frac{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})}{\partial {\varvec{\delta }}^{\mathrm{T}}}, \end{aligned}$$

where

$$\begin{aligned} \mathbf{T}_{21}({\varvec{\delta }})= & {} \frac{1}{n}\sum _{i=1}^{n}\frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n)}{\partial {\varvec{\delta }}^{\mathrm{T}}},\\ \mathbf{T}_{22}({\varvec{\delta }})= & {} \frac{1}{n}\sum _{i=1}^{n}\frac{\partial \mathbf{S}_{\mathrm{eff}}^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})\}}{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})^{\mathrm{T}}}, \end{aligned}$$

and \(\widetilde{{\varvec{\delta }}}_n\) is on the line connecting \({\varvec{\delta }}_0\) and \(\widehat{{\varvec{\delta }}}_n\).

We further expand \(\mathbf{T}_1\) as a function of \(\widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\) about \({\varvec{\gamma }}_0({\varvec{\delta }}_0)\) to obtain

$$\begin{aligned} \mathbf{T}_1 = \mathbf{T}_{11} + \mathbf{T}_{12}\{\widetilde{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\}\sqrt{n}\{\widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0) - {\varvec{\gamma }}_0({\varvec{\delta }}_0)\}, \end{aligned}$$

where

$$\begin{aligned} \mathbf{T}_{11}= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0({\varvec{\delta }}_0)\},\\ \mathbf{T}_{12}\{{\varvec{\gamma }}({\varvec{\delta }}_0)\}= & {} \frac{1}{n}\sum _{i=1}^{n}\frac{\partial \mathbf{S}_{\mathrm{eff}}^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}({\varvec{\delta }}_0)\}}{\partial {\varvec{\gamma }}({\varvec{\delta }}_0)^{\mathrm{T}}}, \end{aligned}$$

and \(\widetilde{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\) is on the line connects \(\widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\) and \({\varvec{\gamma }}_0({\varvec{\delta }}_0)\).

Because of the consistency of \(\mathbf{B}(x)^{\mathrm{T}}\widetilde{{\varvec{\gamma }}}_n\) to g(x) derived from Condition (C6) and Theorem 1, and the weak law of large numbers, for arbitrary \(d_{{\varvec{\gamma }}}\times p\) matrix \(\mathbf{G}\) with \(\Vert \mathbf{G}\Vert _2 = 1\), we have

$$\begin{aligned} \mathbf{T}_{12}\{\widetilde{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\}\mathbf{G}= E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }})}{\partial {\varvec{\gamma }}^{\mathrm{T}}}\mathbf{G}\bigg \arrowvert _{ \mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )}\right\} \{1+o_p(1)\}, \end{aligned}$$

where

$$\begin{aligned}&E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }})}{\partial {\varvec{\gamma }}^{\mathrm{T}}} \mathbf{G}\bigg \arrowvert _{ \mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )}\right\} \nonumber \\&\quad =\int \left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }})}{\partial {\varvec{\gamma }}^{\mathrm{T}}} \mathbf{G}\bigg \arrowvert _{ \mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )}\right\} f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g,f_X) dy_idw_id\mathbf{z}_i\nonumber \\&\quad =\int \left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)}{\partial {\varvec{\gamma }}_0^{\mathrm{T}}}\mathbf{G}+ O_p(h_b^q)\right\} \left\{ f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0, f_X) \right. \nonumber \\&\left. \qquad +\, O_p(h_b^q) \right\} dy_idw_id\mathbf{z}_i\nonumber \\&\quad =\int \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)}{\partial {\varvec{\gamma }}_0^{\mathrm{T}}}\mathbf{G}f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0, f_X) dy_idw_id\mathbf{z}_i + O_p(h_b^q)\nonumber \\&\quad = \frac{\partial }{\partial {\varvec{\gamma }}_0^{\mathrm{T}}}\int \{\mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g)+O_P(h_b^q)\}\mathbf{G}\{f(y_i, w_i, \mathbf{z}_i, \beta _0, g, f_X) \nonumber \\&\qquad +\,O_p(h_b^q)\}dy_idw_id\mathbf{z}_i\nonumber \\&\qquad -\, \int \{\mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g)+O_P(h_b^q)\}\mathbf{G}\frac{\partial f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0, f_X)}{\partial {\varvec{\gamma }}_0^{\mathrm{T}}}dy_idw_id\mathbf{z}_i \nonumber \\&\qquad +\, O_P(h_b^q)\nonumber \\&\quad =-\int \mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g)\left\{ \mathbf{G}^{\mathrm{T}}\mathbf{S}_{a, {\varvec{\gamma }}}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0) \right\} ^{\mathrm{T}}\nonumber \\&\qquad f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g, f_X) dy_idw_id\mathbf{z}_i +\, O_p(h_b^p)\nonumber \\&\quad = O_p(h_b^q). \end{aligned}$$
(A.1)

Here, like before, \(f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}, f_X)\) stands for \(f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g, f_X)\) with \(g(\cdot )\) replaced by \(\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}\), and \(\mathbf{S}_{a, {\varvec{\gamma }}}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)\equiv \partial \log f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}, f_X)/\partial {\varvec{\gamma }}\). The second equality holds by condition \((\mathrm {C}6)\).

The third equality holds because \(\Vert \partial \mathbf{S}_{\mathrm{eff}}^*(y_i, w_i,\mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0)/\partial {\varvec{\gamma }}_0^{\mathrm{T}}\Vert _{\infty }\) is integrable by condition \((\mathrm {C}8)\) and \(f(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0,{\varvec{\gamma }}_0,f_X)\) is absolutely integrable. The fourth equality holds also by condition \((\mathrm {C}6)\). The fifth equality holds because \(E\{\mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}, g)\} = \mathbf{0}\). For the last equality, we note that

$$\begin{aligned} \mathbf{G}^{\mathrm{T}}\mathbf{S}_{a, {\varvec{\gamma }}}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0) = E[s\{y_i,\mathbf{z}_i^{\mathrm{T}}{\varvec{\beta }}_0+\mathbf{B}(X)^{\mathrm{T}}{\varvec{\gamma }}_0,{\varvec{\alpha }}_0\} \mathbf{G}^{\mathrm{T}}\mathbf{B}(X) \mid y_i,w_i,\mathbf{z}_i]. \end{aligned}$$

By Condition \((\mathrm {C}6)\) and definitions of \(\varLambda _{g}\) and \(\varLambda _{a, {\varvec{\gamma }}}\), for any \(d_{{\varvec{\gamma }}} \times p\) matrix \(\mathbf{G}\), there exists a function \(\mathbf{h}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g) \equiv E[s\{y_i, \mathbf{z}_i^{\mathrm{T}}{\varvec{\beta }}_0+g(X),{\varvec{\alpha }}_0\} \mathbf{G}^{\mathrm{T}}\mathbf{B}(X) \mid y_i,w_i,\mathbf{z}_i] \in \varLambda _{g}\) such that

$$\begin{aligned}\sup |\mathbf{G}^{\mathrm{T}}\mathbf{S}_{a, {\varvec{\gamma }}}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }}_0) - \mathbf{h}(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g)| = O_P(h_b^q).\end{aligned}$$

Further, \(\mathbf{S}_{\mathrm{eff}}^*(y_i, w_i, \mathbf{z}_i, {\varvec{\delta }}_0, g)\) is orthogonal to any function in \(\varLambda _{g}\), thus the last equality holds. Hence, we obtain \(\Vert \mathbf{T}_{12}\{\widetilde{{\varvec{\gamma }}}({\varvec{\delta }}_0)\} \Vert _2= O_p(h_b^q) \).

Based on the asymptotic results of Proposition 4 in Jiang and Ma (2018), we have \(\Vert \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0) - {\varvec{\gamma }}_0({\varvec{\delta }}_0)\Vert _2 = O_p\{(nh_b)^{-1/2}\}\). Then, we have

$$\begin{aligned} \Vert \mathbf{T}_{12}\{\widetilde{{\varvec{\gamma }}}_n({\varvec{\delta }}_0)\}\sqrt{n}\{\widehat{{\varvec{\gamma }}}_n({\varvec{\delta }}_0) - {\varvec{\gamma }}_0({\varvec{\delta }}_0)\}\Vert _2 = O_p(h_b^{q - 1/2}). \end{aligned}$$

Further, by \((\mathrm {C}6)\) we have \(\mathbf{T}_{11} = n^{-1/2}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, g)+O_p(n^{1/2}h_b^q)\). Since \(h_b^{q-1/2} = o_p(n^{1/2}h_b^q)\), and \(n^{1/2}h_b^q= o_p(1)\) by conditions \((\mathrm {C}4)\) and \((\mathrm {C}5)\), then

$$\begin{aligned} \mathbf{T}_1 = n^{-1/2}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0,g)+o_p(1). \end{aligned}$$
(A.2)

We next consider each term in \(\mathbf{T}_2(\widetilde{{\varvec{\delta }}}_n)\). Since \(\widehat{{\varvec{\gamma }}}_n(\cdot )\) satisfies

$$\begin{aligned} n^{-1}\sum _{i=1}^{n}{\mathbf{S}_{\mathrm{res}}}_2^*\{Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }},\widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})\}=\mathbf{0} \end{aligned}$$

for any \({\varvec{\delta }}\),

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^{n}\frac{\partial {\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n)}{\partial {\varvec{\delta }}^{\mathrm{T}}} + \frac{1}{n}\sum _{i=1}^{n}\frac{\partial {\mathbf{S}_{\mathrm{res}}}_2^*\{Y_i, W_i, \mathbf{Z}_i,, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})\}}{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})^{\mathrm{T}}}\frac{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})}{\partial {\varvec{\delta }}^{\mathrm{T}}} = \mathbf{0}. \end{aligned}$$

Then,

$$\begin{aligned} \frac{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})}{\partial {\varvec{\delta }}^{\mathrm{T}}} = -\{\mathbf{T}_{23}({\varvec{\delta }})\}^{-1}\mathbf{T}_{24}({\varvec{\delta }}), \end{aligned}$$

where

$$\begin{aligned} \mathbf{T}_{23}({\varvec{\delta }})= & {} \frac{1}{n}\sum _{i=1}^{n}\frac{\partial {\mathbf{S}_{\mathrm{res}}}_2^*\{Y_i, W_i, \mathbf{Z}_i,, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})\}}{\partial \widehat{{\varvec{\gamma }}}_n({\varvec{\delta }})^{\mathrm{T}}}, \\ \mathbf{T}_{24} ({\varvec{\delta }})= & {} \frac{1}{n} \sum _{i=1}^{n}\frac{\partial {\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}, \widehat{{\varvec{\gamma }}}_n)}{\partial {\varvec{\delta }}^{\mathrm{T}}}. \end{aligned}$$

Hence,

$$\begin{aligned} \mathbf{T}_2(\widetilde{{\varvec{\delta }}}_n)=\mathbf{T}_{21}(\widetilde{{\varvec{\delta }}}_n) - \mathbf{T}_{22}(\widetilde{{\varvec{\delta }}}_n)\{\mathbf{T}_{23}(\widetilde{{\varvec{\delta }}}_n)\}^{-1}\mathbf{T}_{24}(\widetilde{{\varvec{\delta }}}_n). \end{aligned}$$

By the consistency of \(\widetilde{{\varvec{\delta }}}_n\) to \({\varvec{\delta }}_0\) and \(\mathbf{B}(x)^{\mathrm{T}}\widehat{{\varvec{\gamma }}}_n\) to g(x), we have

$$\begin{aligned} \mathbf{T}_{21}(\widetilde{{\varvec{\delta }}}_n)=E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0,{\varvec{\gamma }})}{\partial {\varvec{\delta }}_0^{\mathrm{T}}}\bigg \arrowvert _{\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )} \right\} \{1+o_p(1)\}, \end{aligned}$$

and

$$\begin{aligned} \mathbf{T}_{24}(\widetilde{{\varvec{\delta }}}_n) = E\left\{ \frac{\partial {\mathbf{S}_{\mathrm{res}}}_2^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }})}{\partial {\varvec{\delta }}_0 ^{\mathrm{T}}} \bigg \arrowvert _{\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )}\right\} \{1+o_p(1)\}. \end{aligned}$$

From (A.1), we also have

$$\begin{aligned} \mathbf{T}_{22}(\widetilde{{\varvec{\delta }}}_n) = E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, {\varvec{\gamma }})}{\partial {\varvec{\gamma }}^{\mathrm{T}}} \bigg \arrowvert _{ \mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )}\right\} \{1+o_p(1)\}=O_p(h_b^q). \end{aligned}$$

Based on the proof of Proposition 4 in Jiang and Ma (2018), we have \(\Vert \mathbf{T}_{23}(\widetilde{{\varvec{\delta }}}_n)^{-1}\Vert _2 = O_p(h_b^{-1})\). Therefore, we have \(\mathbf{T}_{22}(\widetilde{{\varvec{\delta }}}_n) \{\mathbf{T}_{23}(\widetilde{{\varvec{\delta }}}_n)\}^{-1} \mathbf{T}_{24}(\widetilde{{\varvec{\delta }}}_n)=O_p(h_b^{q-1})\), where \(q>1\) by condition \((\mathrm {C}2)\). Thus,

$$\begin{aligned} \mathbf{T}_2(\widetilde{{\varvec{\delta }}}_n) = E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0,{\varvec{\gamma }})}{\partial {\varvec{\delta }}_0^{\mathrm{T}}}\bigg \arrowvert _{\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )} \right\} \{1+o_p(1)\}+O(h_b^{q-1}). \end{aligned}$$

Therefore,

$$\begin{aligned}&\sqrt{n}(\widehat{{\varvec{\delta }}}_n - {\varvec{\delta }}_0)\\&\quad = -\left[ E\left\{ \frac{\partial \mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0,{\varvec{\gamma }})}{\partial {\varvec{\delta }}_0^{\mathrm{T}}}\bigg \arrowvert _{\mathbf{B}(\cdot )^{\mathrm{T}}{\varvec{\gamma }}= g(\cdot )} \right\} \right] ^{-1}\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, g)\\&\qquad +\,o_p(1). \end{aligned}$$

Since \(n^{-1/2}\sum _{i=1}^{n}\mathbf{S}_{\mathrm{eff}}^*(Y_i, W_i, \mathbf{Z}_i, {\varvec{\delta }}_0, g)\) is the sum of zero-mean random vectors, this will converge in distribution to a multivariate normal distribution with mean \(\mathbf{0}\) and covariance matrix \(\mathbf{V}\) given in Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Ma, Y. & Yang, G. Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function. TEST 29, 553–572 (2020). https://doi.org/10.1007/s11749-019-00668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-019-00668-0

Keywords

Mathematics Subject Classification

Navigation