Skip to main content
Log in

Influence diagnostics in mixed effects logistic regression models

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Correlated binary responses are commonly described by mixed effects logistic regression models. This article derives a diagnostic methodology based on the Q-displacement function to investigate local influence of the responses in the maximum likelihood estimates of the parameters and in the predictive performance of the mixed effects logistic regression model. An appropriate perturbation strategy of the probability of success is established, as a form of assessing the perturbation in the response. The diagnostic methodology is evaluated with Monte Carlo simulations. Illustrations with two real-world data sets (balanced and unbalanced) are conducted to show the potential of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (2003) Categorical data analysis, vol 482. Wiley, New York

    MATH  Google Scholar 

  • Assumpção RAB, Uribe-Opazo MA, Galea M (2014) Analysis of local influence in geostatistics using student-\(t\) distribution. J Appl Stat 41:2323–2341

    Article  MathSciNet  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    MATH  Google Scholar 

  • Capanu M, Gönen M, Begg CB (2013) An assessment of estimation methods for generalized linear mixed models with binary outcomes. Stat Med 32:4550–4566

    Article  MathSciNet  Google Scholar 

  • Caro-Lopera F, Leiva V, Balakrishnan N (2012) Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum–Saunders distributions. J Multivar Anal 104:126–139

    Article  MathSciNet  MATH  Google Scholar 

  • Chen F, Zhu H-T, Song X-Y, Lee S-Y (2010) Perturbation selection and local influence analysis for generalized linear mixed models. J Comput Graph Stat 19:826–842

    Article  MathSciNet  Google Scholar 

  • Cook RD (1986) Assessment of local influence. J R Stat Soc B 48:133–169

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, London

    MATH  Google Scholar 

  • Crowder MJ (1978) Beta-binomial ANOVA for proportions. J R Stat Soc C 27:34–37

    Google Scholar 

  • De Bastiani F, Cysneiros AHMA, Uribe-Opazo MA, Galea M (2015) Influence diagnostics in elliptical spatial linear models. TEST 24:322–340

    Article  MathSciNet  MATH  Google Scholar 

  • Demidenko E (2013) Mixed models: theory and applications with R. Wiley, Hoboken

    MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Díaz-García J, Galea M, Leiva V (2003) Influence diagnostics for elliptical multivariate linear regression models. Commun Stat Theory Methods 32:625–641

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle PJ, Liang K-Y, Zeger SL (1996) Analysis of longitudinal data. Oxford University Press, London

    MATH  Google Scholar 

  • Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018) Birnbaum–Saunders spatial regression models: diagnostics and application to chemical data. Chemom Intell Lab Syst 177:114–128

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Hossain M, Islam MA (2003) Application of local influence diagnostics to the linear logistic regression models. Dhaka Univ J Sci 51:269–278

    Google Scholar 

  • Ibacache-Pulgar G, Paula GA, Cysneiros FJA (2013) Semiparametric additive models under symmetric distributions. TEST 22:103–121

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang J (2007) Linear and generalized linear mixed models and their applications. Springer, New York

    MATH  Google Scholar 

  • Larsen K, Petersen JH, Budtz-Jørgensen E, Endahl L (2000) Interpreting parameters in the logistic regression model with random effects. Biometrics 56:909–914

    Article  MATH  Google Scholar 

  • Leão J, Leiva V, Saulo H, Tomazella V (2017) Birnbaum–Saunders frailty regression models: diagnostics and application to medical data. Biomet J 59:291–314

    Article  MathSciNet  MATH  Google Scholar 

  • Leiva V, Santos-Neto M, Cysneiros FJA, Barros M (2014) Birnbaum–Saunders statistical modelling: a new approach. Stat Model 14:21–48

    Article  MathSciNet  Google Scholar 

  • Lesaffre E, Spiessens B (2001) On the effect of the number of quadrature points in a logistic random-effects model: an example. J R Stat Soc C 50:325–335

    Article  MathSciNet  MATH  Google Scholar 

  • Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54:570–582

    Article  MATH  Google Scholar 

  • Liu S (2000) On local influence in elliptical linear regression models. Stat Pap 41:211–224

    Article  MATH  Google Scholar 

  • Liu S (2004) On diagnostics in conditionally heteroskedastic time series models under elliptical distributions. J Appl Probab 41:393–406

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Ji G, Liu S (2015) Influence diagnostics in a vector autoregressive model. J Stat Comput Simul 85:2632–2655

    Article  MathSciNet  Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA, Vivanco JF (2016) Diagnostics in multivariate generalized Birnbaum–Saunders regression models. J Appl Stat 43:2829–2849

    Article  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1983) Generalized linear models. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc 92:162–170

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch S, Searle S (2001) Generalized, linear and mixed models. Wiley, New York

    MATH  Google Scholar 

  • Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York

    MATH  Google Scholar 

  • Nyangoma SO, Fung WK, Jansen RC (2006) Identifying influential multinomial observations by perturbation. Comput Stat Data Anal 50:2799–2821

    Article  MathSciNet  MATH  Google Scholar 

  • Ouwens MJNM, Tan FES, Berger MPF (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics 57:1166–1172

    Article  MathSciNet  MATH  Google Scholar 

  • Pinheiro JC, Chao EC (2006) Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J Comput Graph Stat 15:58–81

    Article  MathSciNet  Google Scholar 

  • Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61:51–61

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rakhmawati TW, Molenberghs G, Verbeke G, Faes C (2017) Local influence diagnostics for generalized linear mixed models with overdispersion. J Appl Stat 44:620–641

    Article  MathSciNet  MATH  Google Scholar 

  • Raudenbush SW, Yang M, Yosef M (2000) Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. J Comput Graph Stat 9:141–157

    MathSciNet  Google Scholar 

  • Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer, New York

    Book  MATH  Google Scholar 

  • Rocha AV, Simas AB (2011) Influence diagnostic in a general class of beta regression models. TEST 20:95–119

    Article  MathSciNet  MATH  Google Scholar 

  • Santos-Neto M, Cysneiros FJA, Leiva V, Barros M (2016) Reparameterized Birnbaum–Saunders regression models with varying precision. Electron J Stat 10:2825–2855

    Article  MathSciNet  MATH  Google Scholar 

  • Stehlík M, Rodríguez-Díaz JM, Müller WG, López-Fidalgo J (2008) Optimal allocation of bioassays in the case of parametrized covariance functions: an application to lung’s retention of radioactive particles. TEST 17:56–68

    Article  MathSciNet  MATH  Google Scholar 

  • Stiratelli R, Laird N, Ware JH (1984) Random effects models for serial observations with binary responses. Biometrics 40:961–971

    Article  Google Scholar 

  • Svetliza CF, Paula GA (2001) On diagnostics in log-linear negative binomial models. J Stat Comput Simul 71:231–244

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfinger R, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul 48(3–4):233–243

    Article  MATH  Google Scholar 

  • Xu L, Lee SY, Poon WY (2006) Deletion measures for generalized linear mixed effects models. Comput Stat Data Anal 51:1131–1146

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H-T, Lee S-Y (2001) Local influence for incomplete-data models. J R Stat Soc B 63:111–126

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H-T, Lee S-Y (2003) Local influence for generalized linear mixed models. Can J Stat 31:293–309

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Editors and two referees for their constructive comments on an earlier version of this manuscript which resulted in this improved version. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, by HPC resources provided by the Information Technology Superintendence of the University of São Paulo, and also by CNPq from Brazil; as well as by the Chilean Council for Scientific and Technology Research (CONICYT) through fellowship “Becas-Chile” (A. Tapia) and FONDECYT 1160868 Grant (V. Leiva) from the Chilean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Leiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia, A., Leiva, V., Diaz, M.d.P. et al. Influence diagnostics in mixed effects logistic regression models. TEST 28, 920–942 (2019). https://doi.org/10.1007/s11749-018-0613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0613-3

Keywords

Mathematics Subject Classification

Navigation