Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607
PubMed
Article
CAS
Google Scholar
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr et al (2006) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol 21:1–6
PubMed
Article
Google Scholar
Haffner S, Cassells HB (2003) Metabolic syndrome—a new risk factor of coronary heart disease? Diabetes Obes Metab 5:359–370
PubMed
Article
CAS
Google Scholar
Dreon DM, Fernstrom HA, Williams PT, Krauss RM (1999) A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 69:411–418
PubMed
CAS
Google Scholar
Krauss RM (2005) Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol 25(11):2265–2272
PubMed
Article
CAS
Google Scholar
Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28:2289–2304
PubMed
Article
Google Scholar
Lomangino K (2008) Metabolic syndrome diagnosis: clinical value called questionable. Clin Nutr Insight 34:7–8
Google Scholar
Reaven GM (2005) The metabolic syndrome: requiescat in pace. Clin Chem 51:931–938
PubMed
Article
CAS
Google Scholar
Sattar N (2006) The metabolic syndrome: should current criteria influence clinical practice? Curr Opin Lipidol 17:404–411
PubMed
Article
CAS
Google Scholar
Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, Ford I, Forouhi NG, Freeman DJ, Jukema JW et al (2008) Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 371:1927–1935
PubMed
Article
Google Scholar
Bloomgarden ZT (2005) 2nd International Symposium on Triglycerides and HDL: metabolic syndrome. Diabetes Care 28:2577–2584
Boden G, Homko C, Mozzoli M, Zhang M, Kresge K, Cheung P (2007) Combined use of rosiglitazone and fenofibrate in patients with type 2 diabetes: prevention of fluid retention. Diabetes 56:248–255
PubMed
Article
CAS
Google Scholar
Volek JS, Feinman RD (2005) Carbohydrate restriction improves the features of metabolic syndrome. Metabolic syndrome may be defined by the response to carbohydrate restriction. Nutr Metab (Lond) 2:31
Article
CAS
Google Scholar
Volek JS, Fernandez ML, Feinman RD, Phinney SD (2008) Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Prog Lipid Res 47:307–318
PubMed
Article
CAS
Google Scholar
Bloomgarden ZT (2005) Thiazolidinediones. Diabetes Care 28(2):488–493
PubMed
Article
CAS
Google Scholar
Devchand PR (2008) Glitazones and the cardiovascular system. Curr Opin Endocrinol Diabetes Obes 15:188–192
PubMed
CAS
Google Scholar
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH (2007) Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev CD006063
Nielsen JV, Joensson EA (2008) Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab (Lond) 5:14
Article
CAS
Google Scholar
Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP (2005) Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med 142:403–411
PubMed
CAS
Google Scholar
Yancy WS Jr, Foy M, Chalecki AM, Vernon MC, Westman EC (2005) A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2:34
Article
CAS
Google Scholar
Ahrens E Jr (1986) Carbohydrates, plasma triglycerides, and coronary heart disease. Nutr Rev 44:60–64
PubMed
Article
Google Scholar
Hellerstein MK (2002) Carbohydrate-induced hypertriglyceridemia: modifying factors and implications for cardiovascular risk. Curr Opin Lipidol 13:33–40
PubMed
Article
CAS
Google Scholar
Karam J, Nessim F, McFarlane S, Feinman R (2008) Carbohydrate restriction and cardiovascular risk. Curr Cardiovasc Risk Rep 2:88–94
Article
Google Scholar
Tirosh A, Rudich A, Shochat T, Tekes-Manova D, Israeli E, Henkin Y, Kochba I, Shai I (2007) Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 147:377–385
PubMed
Google Scholar
Feinman RD, Volek JS (2006) Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutr Metab (Lond) 3:24
Article
CAS
Google Scholar
Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT (2006) Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr 83:1025–1031
PubMed
CAS
Google Scholar
Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, Kraemer WJ, Feinman RD, Volek JS (2008) Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 43:65–77
PubMed
Article
CAS
Google Scholar
Graham TE, Kahn BB (2007) Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes. Horm Metab Res 39:717–721
PubMed
Article
CAS
Google Scholar
Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U et al (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354:2552–2563
PubMed
Article
CAS
Google Scholar
Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362
PubMed
Article
CAS
Google Scholar
Glickman SG, Marn CS, Supiano MA, Dengel DR (2004) Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol 97:509–514
PubMed
Article
Google Scholar
Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502
PubMed
CAS
Google Scholar
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419
PubMed
Article
CAS
Google Scholar
Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gomez AL, Scheett TP, Volek JS (2002) A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr 132:1879–1885
PubMed
CAS
Google Scholar
Larosa JC, Fry AG, Muesing R, Rosing DR (1980) Effects of high-protein, low-carbohydrate dieting on plasma lipoproteins and body weight. J Am Diet Assoc 77:264–270
PubMed
CAS
Google Scholar
Volek JS, Sharman MJ, Gomez AL, DiPasquale C, Roti M, Pumerantz A, Kraemer WJ (2004) Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coll Nutr 23:177–184
PubMed
Google Scholar
Howard BV, Manson JE, Stefanick ML, Beresford SA, Frank G, Jones B, Rodabough RJ, Snetselaar L, Thomson C, Tinker L et al (2006) Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative Dietary Modification Trial. JAMA 295:39–49
PubMed
Article
CAS
Google Scholar
Feinman RD, Fine EJ (2003) Thermodynamics and metabolic advantage of weight loss diets. Metab Syndr Relat Disord 1:209–219
PubMed
Article
CAS
Google Scholar
Krieger JW, Sitren HS, Daniels MJ, Langkamp-Henken B (2006) Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am J Clin Nutr 83:260–274
PubMed
CAS
Google Scholar
Aarsland A, Wolfe RR (1998) Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res 39:1280–1286
PubMed
CAS
Google Scholar
Volek JS, Sharman MJ, Forsythe CE (2005) Modification of lipoproteins by very low-carbohydrate diets. J Nutr 135:1339–1342
PubMed
CAS
Google Scholar
Barter PJ, Ballantyne CM, Carmena R, Castro Cabezas M, Chapman MJ, Couture P, de Graaf J, Durrington PN, Faergeman O, Frohlich J et al (2006) Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J Intern Med 259:247–258
PubMed
Article
CAS
Google Scholar
Dreon DM, Krauss RM (1997) Diet–gene interactions in human lipoprotein metabolism. J Am Coll Nutr 16:313–324
PubMed
CAS
Google Scholar
Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, Balise RR, Kraemer HC, King AC (2007) Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z weight loss study: a randomized trial. JAMA 297:969–977
PubMed
Article
CAS
Google Scholar
Nuttall FQ, Schweim K, Hoover H, Gannon MC (2008) Effect of the LoBAG30 diet on blood glucose control in people with type 2 diabetes. Br J Nutr 99:511–519
PubMed
Article
CAS
Google Scholar
Westman EC, Yancy WS Jr, Olsen MK, Dudley T, Guyton JR (2006) Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Int J Cardiol 110:212–216
PubMed
Article
Google Scholar
Feinman RD, Volek JS (2008) Carbohydrate restriction as the default treatment for type 2 diabetes and metabolic syndrome. Scand Cardiovasc J 42:256–263
PubMed
Article
CAS
Google Scholar
Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, Yancy WS, Phinney SD (2007) Low-carbohydrate nutrition and metabolism. Am J Clin Nutr 86:276–284
PubMed
CAS
Google Scholar
Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H et al (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241
PubMed
Article
CAS
Google Scholar
Shoji T, Hatsuda S, Tsuchikura S, Shinohara K, Kimoto E, Koyama H, Emoto M, Nishizawa Y (2008) Small dense low-density lipoprotein cholesterol concentration and carotid atherosclerosis. Atherosclerosis (in press)
Austin MA, Hokanson JE, Edwards KL (1998) Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 81:7B–12B
PubMed
Article
CAS
Google Scholar
Toth PP (2005) High-density lipoprotein as a therapeutic target: clinical evidence and treatment strategies. Am J Cardiol 96(9A):50K–58K (discussion: 34K–35K)
Google Scholar
Knopp RH, Paramsothy P, Retzlaff BM, Fish B, Walden C, Dowdy A, Tsunehara C, Aikawa K, Cheung MC (2005) Gender differences in lipoprotein metabolism and dietary response: basis in hormonal differences and implications for cardiovascular disease. Curr Atheroscler Rep 7:472–479
PubMed
Article
CAS
Google Scholar
Fleming J, Sharman MJ, Avery NG, Love DM, Gomez AL, Scheett TP, Kraemer WJ, Volek JS (2003) Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab 13:466–478
PubMed
CAS
Google Scholar
Kunesova M, Hainer V, Tvrzicka E, Phinney SD, Stich V, Parizkova J, Zak A, Stunkard AJ (2002) Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids 37:27–32
PubMed
Article
CAS
Google Scholar
Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K (2005) Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 82:747–750
PubMed
CAS
Google Scholar
Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ (2003) An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial lipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr 133:2756–2761
PubMed
CAS
Google Scholar
Allick G, Bisschop PH, Ackermans MT, Endert E, Meijer AJ, Kuipers F, Sauerwein HP, Romijn JA (2004) A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis. J Clin Endocrinol Metab 89:6193–6197
PubMed
Article
CAS
Google Scholar
Gannon MC, Nuttall FQ (2006) Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr Metab (Lond) 3:16
Article
CAS
Google Scholar
Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090
PubMed
Article
CAS
Google Scholar
Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EJ, Gleed A, Jacobs DB, Larson G, Lustig RH et al (2008) Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab (Lond) 5:9
Article
CAS
Google Scholar
Ng TW, Watts GF, Barrett PH, Rye KA, Chan DC (2007) Effect of weight loss on LDL and HDL kinetics in the metabolic syndrome: associations with changes in plasma retinol-binding protein-4 and adiponectin levels. Diabetes Care 30:2945–2950
PubMed
Article
CAS
Google Scholar
Vitkova M, Klimcakova E, Kovacikova M, Valle C, Moro C, Polak J, Hanacek J, Capel F, Viguerie N, Richterova B et al (2007) Plasma levels and adipose tissue messenger ribonucleic acid expression of retinol-binding protein 4 are reduced during calorie restriction in obese subjects but are not related to diet-induced changes in insulin sensitivity. J Clin Endocrinol Metab 92:2330–2335
PubMed
Article
CAS
Google Scholar
Shea J, Randell E, Vasdev S, Wang PP, Roebothan B, Sun G (2007) Serum retinol-binding protein 4 concentrations in response to short-term overfeeding in normal-weight, overweight, and obese men. Am J Clin Nutr 86(5):1310–1315
PubMed
CAS
Google Scholar
Kahn R (2008) Metabolic syndrome—what is the clinical usefulness? Lancet 371:1892–1893
PubMed
Article
Google Scholar
Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams M, Gracely EJ, Samaha FF (2004) The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 140:778–785
PubMed
Google Scholar