Skip to main content
Log in

Theoretical and Experimental Studies for Corrosion Inhibition Performance of Q235 Steel by Imidazoline Inhibitors against CO2 Corrosion

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The inhibition performance of two imidazoline inhibitors, 1-(2-thioureaethyl)-2-alkyl-imidazoline (TAI) and chloride-1-(2,3-dihydroxylpropyl)-1-(2-thioureaethyl)-2-alkyl-imidazoline sodium phosphate (TAIP), for Q235 steel in saltwater saturated with CO2 was studied by using molecular dynamics simulations and quantum chemistry calculations. The conclusions were experimentally verified by weight loss, polarization curves, electrochemical impedance spectroscopy (EIS) and surface analysis techniques. The theoretical results suggest that imidazoline ring and heteroatoms are the active site and the adsorption stability weakens gradually in the order of TAIP, TAI. Experimental results show that the two inhibitors act as mixed type inhibitors and can inhibit the corrosion of Q235 in CO2 saturated saltwater solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lopez DA, Schreiner WH, De Sanchez SR, Simison SN (2004) The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: an XPS and SEM characterization. Appl Surf Sci 236:77–79

    Article  CAS  Google Scholar 

  2. Durnie WH, Kinsella BJ, De Marco R, Jefferson A (2001) A study of the adsorption properties of commercial carbon dioxide corrosion inhibitor formulations. J Appl Electrochem 31:1221–1226

    Article  CAS  Google Scholar 

  3. Liu X, Okafor PC, Zheng YG (2009) The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives. Corros Sci 51:744–751

    Article  CAS  Google Scholar 

  4. Shukla SK, Quraishi MA, Prakash R (2008) A self-doped conducting polymer “polyanthranilic acid”: an efficient corrosion inhibitor for mild steel in acidic solution. Corros Sci 50:2867–2872

    Article  CAS  Google Scholar 

  5. Aiad IA, Hafiz AA, El-Awady MY, Habib AO (2010) Some imidazoline derivatives as corrosion inhibitors. J Surf Deterg 13:247–254

    Article  CAS  Google Scholar 

  6. Palomar ME, Olivares-Xometl CO, Likhanova NV, Perez-Navarrete JB (2011) Imidazolium, pyridinium and dimethyl-ethylbenzyl ammonium derived compounds. J Surf Deterg 14:211–220

    Article  CAS  Google Scholar 

  7. Kesavan D, Tamizh MM, Gopiraman M, Sulochana N, Karvembu R (2012) Physicochemical studies of 4-substituted n-(2-mercaptophenyl)-salicylideneimines: corrosion inhibition of mild steel in an acid medium. J Surf Deterg 15:567–576

    Article  CAS  Google Scholar 

  8. Gece G, Bilgic S (2009) Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros Sci 51:1876–1878

    Article  CAS  Google Scholar 

  9. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50:2981–2992

    Article  CAS  Google Scholar 

  10. Arslan T, Kandemirli F, Ebenso EE, Love L, Alemu H (2009) Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros Sci 51:35–47

    Article  CAS  Google Scholar 

  11. Khalil N (2003) Quantum chemical approach of corrosion inhibition. Electrochim Acta 48:2635–2640

    Article  CAS  Google Scholar 

  12. Khaled KF (2011) Experimental and computational investigations of corrosion and corrosion inhibition of iron in acid solutions. J Appl Electrochem 41:277–287

    Article  CAS  Google Scholar 

  13. Khaled KF (2008) Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochim Acta 53:3484–3492

    Article  CAS  Google Scholar 

  14. Tang Y, Yang X, Yang W, Chen Y, Wan R (2010) Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4- thia-diazo. Corros Sci 52:242–249

    Article  CAS  Google Scholar 

  15. Karelson M, Lobanov VS (1996) Quantum-chemical. descriptors in QSAR/QSPR Studies. Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  16. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys 23:1833–1841

    Article  CAS  Google Scholar 

  17. Issa RM, Awad MK, Atlam FM (2008) Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Appl Surf Sci 255:2433–2441

    Article  CAS  Google Scholar 

  18. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  19. Jamalizadeh E, Hosseini SMA, Jafari AH (2009) Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media. Corros Sci 51:1428–1435

    Article  CAS  Google Scholar 

  20. Özcan M, Karadağ F, Dehri I (2008) Investigation of adsorption characteristics of methionine at mild steel/sulfuric acid interface: an experimental and theoretical study. Coll Surf A 316:55–61

    Article  Google Scholar 

  21. Lavrich DJ, Wetterer SM, Bernasek SL, Scoles G (1998) Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111). J Phys Chem B 102:3456–3465

    Article  CAS  Google Scholar 

  22. Hu SQ, Hu JC, Fan CC (2010) Theoretical and experimental study of corrosion inhibition performance of new imidazoline corrosion inhibitors. Acta Chim Sinica 68:2051–2058

    CAS  Google Scholar 

  23. Wang B, Du M, Zhang J, Gao CJ (2011) Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion. Corros Sci 53:353–361

    Article  CAS  Google Scholar 

  24. Wang B, Du M, Zhang J (2009) Study of the inhibition mechanism of imidazoline derivative inhibitor on CO2 corrosion for Q235 steel. Adv Materials Res 79–82:981–984

    Article  Google Scholar 

  25. Lopez DA, Simison SN, De Sanchez SR (2005) Inhibitors performance in CO2 corrosion: eIS studies on the interaction between their molecular structure and steel microstructure. Corros Sci 47:735–755

    Article  CAS  Google Scholar 

  26. Khaled KF, Hackerman N (2003) Investigation of the inhibitive effect of ortho-substituted anilines on corrosion of iron in 1 M HCl solutions. Electrochim Acta 48:2715–2723

    Article  CAS  Google Scholar 

  27. Nesic S, Postlethwaite J, Olsen S (1996) An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions. Corrosion 52:280–306

    Article  CAS  Google Scholar 

  28. Gojic M (2001) The effect of propargylic alcohol on the corrosion inhibition of low alloy CrMo steel in sulphuric acid. Corros Sci 43:919–929

    Article  CAS  Google Scholar 

  29. El-Tabei AS, Hegazy MA (2013) A corrosion inhibition study of a novel synthesized gemini nonionic surfactant for carbon steel in 1 M HCl solution. J Surf Deterg. doi:10.1007/s11743-013-1457-1

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 40806030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2780 kb)

About this article

Cite this article

Zhang, J., Niu, L., Zhu, F. et al. Theoretical and Experimental Studies for Corrosion Inhibition Performance of Q235 Steel by Imidazoline Inhibitors against CO2 Corrosion. J Surfact Deterg 16, 947–956 (2013). https://doi.org/10.1007/s11743-013-1515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1515-8

Keywords

Navigation