Skip to main content
Log in

Life cycle oriented technology chain optimization: a methodology to identify the influences of tool manufacturing on environmental impacts caused in the tool’s use phase

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Limited availability of resources, increasing global energy demand and legal regulations force tool manufacturers to offer ecologically efficient products. Tools cause environmental impacts in every phase of their life cycles—from resource extraction to disposal. Environmental impacts arising during the use phase are highly dependent on the tool characteristics created in the tool’s manufacturing phase. A holistic analysis of the parameters affecting the use phase as well as of the manufacturing technologies used to manufacture the tool is needed in order to minimize the environmental impacts of the use phase. A methodology that supports technology planners to modify technology chains in order to improve a tool’s ecological efficiency under consideration of the influences between lifecycle phases is therefore introduced. The tool is first analyzed to identify its relevant characteristics. Technological influences within the tool’s use phase are then analyzed. The influences of the manufacturing phase on tool characteristics are identified in a third stage. Fourthly, the tool’s environmental impacts caused by the tool characteristics and by the technological influences during the use phase are added. The methodology therefore enables the reduction of a tool’s environmental impacts in selected impact categories by adjusting identified levers in the tool’s manufacturing phase and in its use phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chryssolouris G, Papakostas N, Mavrikios D (2008) A perspective on manufacturing strategy: produce more with less. CIRP J Manuf Sci Technol 1(1):45–52. https://doi.org/10.1016/j.cirpj.2008.06.008

    Article  Google Scholar 

  2. European Commission (2014) Report on critical raw materials for the EU: report of the Ad hoc Working Group on defining critical raw materials

  3. Eyrisch T (2009) Optimierung der Herstellung von Vollhartmetallwerkzeugen: Strategie zur Vermeidung von Oberflächenschädigungen. Diss., TU Kaiserslautern

  4. Sant’Anna PR, Bouzon M, Tortorella GL, Campos LMS (2017) Implementation of Lean and Green practices: a supplier-oriented assessment method. Prod Eng Res Dev 11(4–5):531–543. https://doi.org/10.1007/s11740-017-0749-0

    Article  Google Scholar 

  5. International Organization for Standardization (2009) Environmental management—life cycle assessment—principles and framework 3.020.10 (ISO 14040)

  6. Helu M, Vijayaraghavan A, Dornfeld D (2011) Evaluating the relationship between use phase environmental impacts and manufacturing process precision. CIRP Ann Manuf Technol 60(1):49–52. https://doi.org/10.1016/j.cirp.2011.03.020

    Article  Google Scholar 

  7. Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR (2012) Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE!: initiative (cooperative effort on process emissions in manufacturing). Part 1: methodology description. Int J Life Cycle Assess 17(1):69–78. https://doi.org/10.1007/s11367-011-0340-4

    Article  Google Scholar 

  8. Milberg J, Müller S (2007) Integrated configuration and holistic evaluation of technology chains within process planning. Prod Eng Res Dev 1(4):401–406. https://doi.org/10.1007/s11740-007-0055-3

    Article  Google Scholar 

  9. Klocke F, Buchholz S, Stauder J (2014) Technology chain optimization: a systematic approach considering the manufacturing history. Prod Eng Res Dev 8(5):669–678. https://doi.org/10.1007/s11740-014-0572-9

    Article  Google Scholar 

  10. Stauder J, Buchholz S, Mattfeld P, Rey J (2016) Evaluating the substitution risk of production systems in volatile environments. Prod Eng Res Dev 10(3):305–318. https://doi.org/10.1007/s11740-016-0670-y

    Article  Google Scholar 

  11. Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change sustainable development and efforts to eradicate poverty. Intergovernmental Panel on Climate Change, Geneva, Switzerland

  12. Heller J, Loewer M, Feldhusen J (2014) Enhanced function structure applicability through adaptive function templates. Athens J Technol Eng 1(1):33–46

    Google Scholar 

  13. Zhao GY, Liu ZY, He Y, Cao HJ, Guo YB (2017) Energy consumption in machining: classification, prediction, and reduction strategy. Energy 133:142–157. https://doi.org/10.1016/j.energy.2017.05.110

    Article  Google Scholar 

  14. Chiu MC, Chu CH (2012) Review of sustainable product design from life cycle perspectives. Int J Precis Eng Manuf 13(7):1259–1272. https://doi.org/10.1007/s12541-012-0169-1

    Article  Google Scholar 

  15. Bereketli İ, Genevois ME (2012) Environmental impact assessment in sustainable manufacturing: a case study. IFAC Proc Vol 45(6):746–751. https://doi.org/10.3182/20120523-3-RO-2023.00194

    Article  Google Scholar 

  16. Delogu M, Zanchi L, Dattilo CA, Ierides M (2018) Parameters affecting the sustainability trade-off between production and use stages in the automotive lightweight design. Proced CIRP 69:534–539. https://doi.org/10.1016/j.procir.2017.12.063

    Article  Google Scholar 

  17. Germani M, Mandolini M, Marconi M, Marilungo E (2014) A method for the estimation of the economic and ecological sustainability of production lines. Proced CIRP 15:147–152. https://doi.org/10.1016/j.procir.2014.06.072

    Article  Google Scholar 

  18. Stavropoulos P, Giannoulis C, Papacharalampopoulos A, Foteinopoulos P, Chryssolouris G (2016) Life cycle analysis: comparison between different methods and optimization challenges. Proced CIRP 41:626–631. https://doi.org/10.1016/j.procir.2015.12.048

    Article  Google Scholar 

  19. CIRP International Institution for Production Engineering Research (2004) Dictionary of production engineering, 2nd edn. Springer, Berlin, p 26

    Google Scholar 

  20. Klocke F (2011) Manufacturing processes 1: cutting. Springer, Berlin

    Book  Google Scholar 

  21. Klocke F, Mattfeld P, Stauder J, Müller J, Grünebaum T (2017) Robust technology chain design: considering undesired interactions within the technology chain. Prod Eng Res Dev 11(4–5):575–585. https://doi.org/10.1007/s11740-017-0756-1

    Article  Google Scholar 

  22. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann 54(2):22–45. https://doi.org/10.1016/S0007-8506(07)60018-3

    Article  Google Scholar 

  23. Zetek M, Česáková I, Švarc V (2014) Increasing cutting tool life when machining Inconel 718. Proced Eng 69:1115–1124. https://doi.org/10.1016/j.proeng.2014.03.099

    Article  Google Scholar 

  24. Saglam H, Yaldiz S, Unsacar F (2007) The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater Des 28(1):101–111. https://doi.org/10.1016/j.matdes.2005.05.015

    Article  Google Scholar 

  25. Paucksch E, Holsten S, Linß M, Tikal F (2008) Zerspantechnik: Prozesse, Werkzeuge, Technologien, 12th edn. Vieweg Teubner, Wiesbaden

    Google Scholar 

  26. Özel T, Hsu TK, Zeren E (2005) Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int J Adv Manuf Technol 25(3–4):262–269. https://doi.org/10.1007/s00170-003-1878-5

    Article  Google Scholar 

  27. Klocke F (2018) Zerspanung mit geometrisch bestimmter Schneide, 9th edn. Springer, Berlin

    Book  Google Scholar 

  28. Wuest T, Klein D, Seifert M, Thoben KD (2012) Method to describe interdependencies of state characteristics related to distortion. Mater Werkstofftech 43(1–2):186–191. https://doi.org/10.1002/mawe.201100908

    Article  Google Scholar 

  29. Denkena B, Henjes J, Henning H (2011) Simulation-based dimensioning of manufacturing process chains. CIRP J Manuf Sci Technol 4(1):9–14. https://doi.org/10.1016/j.cirpj.2011.06.015

    Article  Google Scholar 

  30. Nowag L, Sölter J, Brinksmeier E (2007) Influence of turning parameters on distortion of bearing rings. Prod Eng Res Dev 1(2):135–139. https://doi.org/10.1007/s11740-007-0009-9

    Article  Google Scholar 

  31. Mang T, Bobzin K, Bartels T (eds) (2011) Industrial tribology: tribosystems, friction, wear and surface engineering, lubrication. Wiley-VCH, Weinheim

    Google Scholar 

  32. Huijbregts MAJ, Steinmann ZJN, elshout PMF, Stam G, Verones F, Vieira MDM, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterization. National Institute for Public Health and the Environment. Bilthoven, Netherlands

  33. Maaßen U, Schiffer H-W (2018) The German lignite industry in 2017. World Min Surf Undergr 70(3):156–166

    Google Scholar 

  34. Burger B (2018) Stromerzeugung im ersten Halbjahr 2018. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/daten-zu-erneuerbaren-energien/ISE_Stromerzeugung_2018_Halbjahr.pdf. Accessed 20 May 2019

  35. Juhrich K (2016) CO2 emission factors for fossil fuels. German Environment Agency (UBA), Dessau, Germany

    Google Scholar 

  36. DEW21 (2018) Erdgas Kennwerte 2018. Dortmund Energy and Water Supply. https://www.dew21.de/fileadmin/Dokumente/Produkte/Erdgas/Erdgaskennwerte.pdf. Accessed 20 May 2019

  37. Heisel U, Klocke F, Uhlmann E, Spur G (2014) Handbuch Spanen, 2nd edn. Hanser, Munich

    Google Scholar 

  38. Degner W, Lutze H, Smejkal E (2015) Spanende Formung: Theorie, Berechnung, Richtwerte, 17th edn. Hanser, Munich

    Book  Google Scholar 

  39. Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1636–1646. https://doi.org/10.1177/2041297511398541

    Article  Google Scholar 

  40. Diaz N, Redelsheimer E, Dornfeld D (2011) Energy consumption characterization and reduction strategies for milling machine tool use. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing: proceedings of the 18th CIRP international conference on life cycle engineering. Springer, Berlin, pp 263–267

  41. Arsecularatne JA, Zhang LC, Montross C (2006) Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int J Mach Tools Manuf 46(5):482–491. https://doi.org/10.1016/j.ijmachtools.2005.07.015

    Article  Google Scholar 

  42. Suh NP (1990) The principles of design. Oxford series on advanced manufacturing, vol 6. Oxford University Press, New York

    Google Scholar 

  43. Mourtzis D, Papakostas N, Mavrikios D, Makris S, Alexopoulos K (2015) The role of simulation in digital manufacturing: applications and outlook. Int J Comput Integr Manuf 28(1):3–24. https://doi.org/10.1080/0951192X.2013.800234

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation DFG for funding the depicted research within the Project KL 500/158-1 “Produktlebenszyklursorientierte Bewertung von Fertigungsverfahren”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Grünebaum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grünebaum, T., Müller, U., Rey, J. et al. Life cycle oriented technology chain optimization: a methodology to identify the influences of tool manufacturing on environmental impacts caused in the tool’s use phase. Prod. Eng. Res. Devel. 13, 567–577 (2019). https://doi.org/10.1007/s11740-019-00911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00911-5

Keywords

Navigation