Advertisement

Production Engineering

, Volume 12, Issue 2, pp 161–172 | Cite as

Predictive quality control of hybrid metal-CFRP components using information fusion

  • Dietrich Berger
  • Marielouise Zaiß
  • Gisela Lanza
  • Jannik Summa
  • Michael Schwarz
  • Hans-Georg Herrmann
  • Markus Pohl
  • Fabian Günther
  • Markus Stommel
Quality Assurance
  • 119 Downloads

Abstract

The paper presents an approach to determine the durability of hybrid metal-CFRP components combining the results of non-destructive testing (ndt) and finite element simulation The advantage of hybrid metal-CFRP components lies in the use of the properties of the materials used. CFRP parts with higher specific stiffness and strength are combined with metallic joining points, so that established joining processes for metal components can be applied to these lightweight components. In order to further promote the use of these hybrids in industry, it is necessary to guarantee a high level of component reliability through 100% quality control in order to avoid production-related defects. These defects such as delamination or fibre disorientation however vary in shape, size and position and lead to different effects on the part performance and reliability. Therefore the presented approach includes the application of non-destructive testing methods that are applied as in-line quality control measures in order to determine defect characteristics of the inspected parts. Due to the novelty of the component under test it is necessary to evaluate the individual criticality of detected defects and how they affect part performance during the testing procedure. Therefore the acquired ndt-data is used in finite element simulations where defect characteristics are added to the component model and whose effects on part reliability are evaluated. The generation of additional information combining non-destructive testing and simulation is referred to as data fusion. In order to evaluate the validity of the presented approach the determined part performances are compared to experimental mechanic tests.

Keywords

Quality control Non-destructive testing Finite element simulation Hybrid CFRP 

References

  1. 1.
    Camanho PP, Fink A, Obst A, Pimenta S (2009) Hybrid titanium-CFRP laminates for high-performance bolted joints. Compos Part A Appl Sci Manuf 40(12):1826–1837CrossRefGoogle Scholar
  2. 2.
    Pottmeyer F, Muth M, Weidenmann KA (2017) Research of the load bearing capacity of shape-optimized metal inserts embedded in CFRP under different types of stresses. In: Key engineering materials, pp 636–643Google Scholar
  3. 3.
    A Herwig et al (2016) Entwicklung eines mehrlagigen Inserts für dünnwandige Hochleistungs-CFK-Strukturen. Lightweight design: die Fachzeitschrift für den Leichtbau bewegter Massen 9(1):22–27.  https://doi.org/10.1007/s35725-015-0064-7,CrossRefGoogle Scholar
  4. 4.
    Kießling R et al (2017) The Interface of an intrinsic hybrid composite—development, production and characterisation. Proc CIRP 66:289–293CrossRefGoogle Scholar
  5. 5.
    Ucsnik S, Scheerer M, Zaremba S, Pahr DH (2010) Experimental investigation of a novel hybrid metal-composite joining technology. Compos Part A Appl Sci Manuf 41(3):369–374CrossRefGoogle Scholar
  6. 6.
    Pohl M, Stommel M (2016) Designing a metal-CFRP-hybrid by using a structured polymeric component on the interface. In: ECCM 2016—Proceeding of the 17th European conference on composite materialsGoogle Scholar
  7. 7.
    Heuer H et al (2015) Review on quality assurance along the CFRP value chain—non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques. Compos Part B Eng 77:494–501CrossRefGoogle Scholar
  8. 8.
    Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Proc Struct Integr 1:50–57CrossRefGoogle Scholar
  9. 9.
    Unnþórsson R (2005) NDT methods for evaluating carbon fiber composites. In: Shaw MT, MacKnight WJ (eds) Introduction to polymer viscoelasticity. Wiley, Hoboken, pp 1–6Google Scholar
  10. 10.
    Spiessberger C, Dillenz A, Zweschper T (2010) Active thermography for quantitative NDT of CFRP components. NDT Aerosp 3(2):1–7Google Scholar
  11. 11.
    Brabandt D, Lanza G (2015) Data processing for an inline measurement of preforms in the CFRP-production. Proc CIRP 33:269–274CrossRefGoogle Scholar
  12. 12.
    Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci 38(16):1759–1788CrossRefGoogle Scholar
  13. 13.
    Jegou L, Marco Y, Le Saux V, Calloch S (2013) Fast prediction of the Wöhler curve from heat build-up measurements on short fiber reinforced plastic. Int J Fatigue 47:259–267CrossRefGoogle Scholar
  14. 14.
    Palumbo D, de Finis R, Demelio PG, Galietti U (2016) A new rapid thermographic method to assess the fatigue limit in GFRP composites. Compos Part B Eng 103:60–67CrossRefGoogle Scholar
  15. 15.
    Harizi W, Chaki S, Bourse G, Ourak M (2014) Mechanical damage assessment of glass fiber-reinforced polymer composites using passive infrared thermography. Compos Part B Eng 59:74–79CrossRefGoogle Scholar
  16. 16.
    Cuadra J, Vanniamparambil PA, Hazeli K, Bartoli I, Kontsos A (2013) Damage quantification in polymer composites using a hybrid NDT approach. Compos Sci Technol 83:11–21CrossRefGoogle Scholar
  17. 17.
    Maldague X (2001) Theory and practice of infrared technology for nondestructive testing. Wiley, New YorkGoogle Scholar
  18. 18.
    Weckenmann A, Gawande B (2012) Koordinatenmesstechnik: Flexible Meßstrategien für Maß, Form und Lage, 1st edn. Carl Hanser Fachbuchverlag, MunichCrossRefGoogle Scholar
  19. 19.
    Brosch T (2010) Koordinatenmesstechnik 2010: Technologien für eine wirtschaftliche Produktion; 8. VDI-Fachtagung, Braunschweig, 3. und 4. November 2010. VDI-Verl., DüsseldorfGoogle Scholar
  20. 20.
    Bernstein J (2011) Optisches Multi-Sensor-Messverfahren zur dimensionellen in-line Messung von Strangprofilen im FertigungsprozessGoogle Scholar
  21. 21.
    Ruser H, Puente F, León (2007) Informationsfusion—Eine Übersicht (Information fusion—an overview). tm Technisches Messen, 74(3):74CrossRefGoogle Scholar
  22. 22.
    Mersmann C (2013) Industrialisierende Machine-Vision-Integration im Faserverbundleichtbau, 1st edn. Apprimus Wissenschaftsverlag, AachenGoogle Scholar
  23. 23.
    Forum Bildverarbeitung (2014) Forum Bildverarbeitung 2014: [27.-28. November 2014 in Regensburg]. KIT Scientific Publishing; Technische Informationsbibliothek u. Universitätsbibliothek, KarlsruheGoogle Scholar
  24. 24.
    Holstein P (2015) Automatische Fehlererkennung in Kunststoffkompositbauteilen. DGZfP DACH JahrestagungGoogle Scholar
  25. 25.
    Schulze MH, Goldbach S, Heuer H, Meyendorf N Ein Methodenvergleich—ZfP an Kohlefaserverbundwerkstoffen mittels wirbelstrom- und ultraschallbasierender PrüfverfahrenGoogle Scholar
  26. 26.
    Zaiß M, Demmerle J, Oergele J-N, Lanza G (2017) New concepts for quality assurance of lightweight material. Procedia CIRP 66:259–264CrossRefGoogle Scholar
  27. 27.
    Berger D et al (2017) Effects of defects in series production of hybrid CFRP lightweight components—detection and evaluation of quality critical characteristics. Measurement 95:389–394CrossRefGoogle Scholar
  28. 28.
    Grasse F, Zur M Composite testing, US-plus—test system for online process monitoring [online]. http://grassezur.de/en/prozesskontrolle. Accessed 30 Mar 2018
  29. 29.
    Grasse F, Zur M (2016) Grasse Zur Composite Testing - Prüfsystem für das Online-Prozessmonitoring von reaktiven KunststoffenGoogle Scholar
  30. 30.
    Mayes J, Hansen AC (2004) A comparison of multicontinuum theory based failure simulation with experimental results. Compos Sci Technol 64(3–4):517–527CrossRefGoogle Scholar
  31. 31.
    Mayes J, Hansen AC (2004) Composite laminate failure analysis using multicontinuum theory. Compos Sci Technol 64(3–4):379–394CrossRefGoogle Scholar
  32. 32.
    Naik RA, Patel SR, Case SW (2001) Fatigue damage mechanism characterization and modeling of a woven graphite/epoxy composite. J Thermoplast Compos Mater 14(5):404–420CrossRefGoogle Scholar
  33. 33.
    Hansen AC, Baker-Jarvis J (1990) A rate dependent kinetic theory of fracture for polymers. Int J Fract 44:221–231.  https://doi.org/10.1007/BF00035518 Google Scholar
  34. 34.
    Bhuiyan FH, Fertig RS (2016) A multiscale approach for progressive fatigue failure modeling of a woven composite rve. In: Proceedings of the American Society for Composites—31st technical conference, ASC 2016Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  • Dietrich Berger
    • 1
  • Marielouise Zaiß
    • 1
  • Gisela Lanza
    • 1
  • Jannik Summa
    • 2
  • Michael Schwarz
    • 2
  • Hans-Georg Herrmann
    • 2
    • 3
  • Markus Pohl
    • 4
  • Fabian Günther
    • 4
  • Markus Stommel
    • 4
  1. 1.wbk Institute of Production ScienceKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.LLB - Chair for Lightweight SystemsSaarland UniversitySaarbrückenGermany
  3. 3.IZFP Fraunhofer Institute for Nondestructive TestingSaarbrückenGermany
  4. 4.LKT - Chair for Plastics TechnologyDortmund UniversityDortmundGermany

Personalised recommendations