Advertisement

Production Engineering

, Volume 12, Issue 2, pp 249–257 | Cite as

A process and load adjusted coating system for metallic inserts in hybrid composites

  • R. Kießling
  • J. Ihlemann
  • M. Riemer
  • W.-G. Drossel
  • A. Dittes
  • I. Scharf
  • T. Lampke
  • S. Sharafiev
  • M. Pouya
  • M. F.-X. Wagner
Production Process

Abstract

According to the concept of an intrinsic hybrid composite, adhesive bonding is designed for generating the connection between the applied fiber reinforced polymer and a metallic insert. To induce adhesive bonding, a metallic insert, made of aluminum, is coated. This contribution focusses on the development of a suitable coating system. To this end, the coating system must meet certain requirements. On one hand, demands on the coating like ductility can be deduced from analyzing the manufacturing process. On the other hand, requirements like corrosion protection as well as high static and dynamic strength arise from specific applications under considerations. The utilized coating system is based on organically modified silicate layers (Ormosil) applied using a sol–gel process. To prove that this coating system fulfils the requirements, the corrosion protection is analysed by impedance spectroscopy. Furthermore, different mechanical experimental investigations are performed to verify the ductility of the coating as well as the strength of the resulting interface. Hence, it is shown that the considered coating system can be applied for the analysed intrinsic hybrid composite manufactured in series.

Keywords

Coating system Interface Intrinsic hybrid composite Organically modified silicate layers 

Notes

Acknowledgements

This research was supported by the German National Science Foundation (DFG) within the Priority Program 1712.

References

  1. 1.
    Arenas JM, Alia C, Narbon JJ, Ocana R, Gonzalez C (2013) Considerations for the industrial application of structural adhesive joints in the aluminum-composite material bonding. Compos Part B 44:417–423CrossRefGoogle Scholar
  2. 2.
    Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy–theory, experiment and application. Wiley, New YorkGoogle Scholar
  3. 3.
    Bothelo EC, Silva RA, Pardini L, Rezende M (2006) A review on the development and properties of continuous fiber/epoxy/aluminium hybrid composites for aircraft structures. Mat Res 9(3):247–256CrossRefGoogle Scholar
  4. 4.
    Darwich S, Scharf I, Engelhardt G, Lampke T (2011) Sol–gel coating for alluminium alloy: self-healing characteristics. JEPT 217:3–13Google Scholar
  5. 5.
    DIN EN 1465 (2009) Adhesives–determination of tensile lap-shear strength of bonded assemblies. Beuth Verlag, BerlinGoogle Scholar
  6. 6.
    DIN EN 1465 (2011) Advanced technical ceramics–mechanical properties of ceramic composites at room temperature–part 3: determination of flexural strength. Beuth Verlag, BerlinGoogle Scholar
  7. 7.
    DIN EN ISO 1110 (1997) Plastics—polyamides—accelerated conditioning of test specimens. Beuth Verlag, BerlinGoogle Scholar
  8. 8.
    Fleischer J, Koch SF, Coutandin S (2015) Manufacturing of polygon fiber reinforced plastic profiles by rotational molding and intrinsic hybridization. Prod Eng Res Devel 9:317–328CrossRefGoogle Scholar
  9. 9.
    Gac PYL, Arhant M, Gall ML, Davies P (2017) Yield stress changes induced by water in polyamide 6: Characterization and modeling. Polym Degrad Stab 137:272–280CrossRefGoogle Scholar
  10. 10.
    Heckert A, Zaeh MF (2014) Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics. Phys Procedia 56:1171–1181CrossRefGoogle Scholar
  11. 11.
    Henning F, Moeller E (2011) Handbuch Leichtbau—Methoden, Werkstoffe, Fertigung. Carl Hanser Verlag, MünchenCrossRefGoogle Scholar
  12. 12.
    Hopmann C, Klein J, Schönfuß BI, Reisgen U, Schönberger J, Schiebahn A (2017) Analysis and specification of the crash behaviour of plastics/metal-hybrid composites by experimenal and numerical methods. Prod Eng Res Devel 11:183–193CrossRefGoogle Scholar
  13. 13.
    Huang Z, Sugiyama S, Yanagimoto J (2014) Adhesive-embossing hybrid joining process to fiber-reinforced thermosetting plastic and metallic thin sheets. Procedia Eng 81:2123–2128CrossRefGoogle Scholar
  14. 14.
    Jaehne E, Oberoi S, Adler HJP (2008) Ultra thin layers as new concepts for corrosion inhibition and adhesion promotion. Prog Org Coat 61:211–223CrossRefGoogle Scholar
  15. 15.
    Kießling R, Ihlemann J, Riemer M, Drossel WG (2016a) Production and modelling of an intrinsic hybrid metal composite for automotive parts. Int J Automot Compos 2(3/4):209–228CrossRefGoogle Scholar
  16. 16.
    Kießling R, Ihlemann J, Riemer M, Drossel WG, Scharf I, Lampke T, Sharafiev S, Pouya M, Wagner MFX (2016b) On the development of an intrinsic hybrid composite. IOP Conf Ser: Mater Sci Eng 118:1–6Google Scholar
  17. 17.
    Kießling R, Landgraf R, Scherzer R, Ihlemann J (2016c) Introducing the concept of directly connected rheological elements by reviewing rheological models at large strains. Int J Solids Struct 97–98:650–667CrossRefGoogle Scholar
  18. 18.
    Kießling R, Ihlemann J, Riemer M, Drossel WG, Scharf I, Lampke T, Sharafiev S, Pouya M, Wagner MFX (2017) The interface of an intrinsic hybrid composite—development, production and characterisation. Procedia CIRP 66:289–293CrossRefGoogle Scholar
  19. 19.
    Kinloch AJ (ed) (1983) Durability of structural adhesives. Springer, DordrechtGoogle Scholar
  20. 20.
    Lampke T, Darwich S, Nickel D, Wielage B (2008) Development and characterization of sol–gel composite coatings on aluminum alloy for corrosion protection. Materialwiss Werkstofftech 39(12):914–919CrossRefGoogle Scholar
  21. 21.
    Mitschang P, Velthuis R, Emrich S, Kopnarksi M (2009) Induction heated joining of aluminum and carbon fiber reinforced nylon 66. J Thermoplast Compos 22(6):767–801CrossRefGoogle Scholar
  22. 22.
    Pouya M, Winter S, Fritsch S, Wagner MFX (2017) A numerical and experimental study of temperature effects on deformation bahavior of carbon steels at high strain rates. IOP Conf Ser: Mater Sci Eng 181:1–7Google Scholar
  23. 23.
    Pouya M, Balasubramaniam S, Sharafiev S, Wagner MFX (2018) Dynamic behavior of geometrically complex hybrid composite samples in a split-hopkinson pressure bar system. IOP Conf Ser: Mater Sci Eng. ISBN: 978-3-00-058901-0Google Scholar
  24. 24.
    Rasche M (1990) Der Zugscherversuch in der Klebetechnik. Adhäsion 11:36–43Google Scholar
  25. 25.
    Riemer M, Müller R, Drossel WG, Landgrebe D (2017) Process development and tooling design for intrinsic hybrid composites. J Phys: Conf Ser 896:043Google Scholar
  26. 26.
    Saborowski E, Scholze M, Lindner T, Lampke T (2017) A numerical and experimental comparison of test methods for the shear strength in hybrid metal/thermoplastic-compounds. IOP Conf Ser: Mater Sci Eng 181:1–13CrossRefGoogle Scholar
  27. 27.
    Shutov AV (2016) Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split. Comput Method Appl M 306:151–174MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shutov AV, Kreißig R (2008) Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput Method Appl M 197:2015–2029MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sinmazcelik T, Avcu E, Bora MO, Coban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32:3671–3685CrossRefGoogle Scholar
  30. 30.
    Stock A, Egger P (2011) Organobleche verlassen das Hochpreissegment. Composites. World 12(1):12–15Google Scholar
  31. 31.
    Zhang Z, Shan JG, Tan XH, Zhang J (2016) Effect of anodizing pretreatment on laser joining cfrp to aluminum alloy a6061. Int J Adhes Adhes 70:142–151CrossRefGoogle Scholar
  32. 32.
    Zopp C, Kroll L, Trautmann M, Nestler D (2016) Einfluss der natürlichen Freibewitterung und des VDA-Klimawechseltests auf die mechanischen Eigenschaften thermoplastbasierter hybrider Laminate. In: Lampke T (ed) Tagungsband zum 18. Werkstofftechnischen Kolloquium, Schriftenreihe Werkstoffe und werkstofftechnische AnwendungenGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Chair of Solid MechanicsChemnitz University of TechnologyChemnitzGermany
  2. 2.Fraunhofer Institute for Machine Tools and Forming Technology ChemnitzChemnitzGermany
  3. 3.Chair of Materials and Surface EngineeringChemnitz University of TechnologyChemnitzGermany
  4. 4.Chair of Material ScienceChemnitz University of TechnologyChemnitzGermany

Personalised recommendations