Internal and Emergency Medicine

, Volume 13, Issue 5, pp 647–649 | Cite as

Oxidative stress and inflammation: new molecular targets for cardiovascular diseases

  • Matteo BecattiEmail author
  • Amanda Mannucci
  • Niccolò Taddei
  • Claudia Fiorillo

Coronary artery disease (CAD) is the underlying condition in most acute coronary events and the leading cause of death in developed countries [1]. The previous studies have shown that oxidative stress, a condition caused by an imbalance between reactive oxygen species (ROS) production and antioxidant defense systems and closely associated with many other chronic and acute disorders [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], contributes to the initiation and progression of endothelial dysfunction and atherogenesis [13]. Indeed, ROS can damage every cell component, such as lipids, proteins, and DNA, and can also trigger pro-inflammatory cytokine production.

In many pathogenetic events of atherosclerosis such as endothelial dysfunction, low-density lipoprotein oxidation (OxLDL) [14], vascular smooth muscle cell proliferation, platelet aggregation and inflammation, and ROS, may play pivotal roles [15].

Inflammation-induced endothelial injury emerges as a key factor connecting chronic...


Compliance with ethical standards

Conflict of interest


Statements on human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent



  1. 1.
    GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171. CrossRefGoogle Scholar
  2. 2.
    Magherini F, Abruzzo PM, Puglia M, Bini L, Gamberi T, Esposito F, Veicsteinas A, Marini M, Fiorillo C, Gulisano M, Modesti A (2012) Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. J Proteom 75:978–992. CrossRefGoogle Scholar
  3. 3.
    Becatti M, Boccalini G, Pini A, Fiorillo C, Bencini A, Bani D, Nistri S (2015) Protection of coronary endothelial cells from cigarette smoke-induced oxidative stress by a new Mn(II)-containing polyamine–polycarboxilate scavenger of superoxide anion. Vasc Pharmacol 75:19–28. CrossRefGoogle Scholar
  4. 4.
    Emmi G, Silvestri E, Squatrito D, Amedei A, Niccolai E, D’Elios MM, Della Bella C, Grassi A, Becatti M, Fiorillo C, Emmi L, Vaglio A, Prisco D (2015) Thrombosis in vasculitis: from pathogenesis to treatment. Thromb J 13:15. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Becatti M, Marcucci R, Bruschi G, Taddei N, Bani D, Gori AM, Giusti B, Gensini GF, Abbate R, Fiorillo C (2014) Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol 34:1355–1361. CrossRefPubMedGoogle Scholar
  6. 6.
    Becatti M, Fiorillo C, Gori AM, Marcucci R, Paniccia R, Giusti B, Violi F, Pignatelli P, Gensini GF, Abbate R (2013) Platelet and leukocyte ROS production and lipoperoxidation are associated with high platelet reactivity in non-ST elevation myocardial infarction (NSTEMI) patients on dual antiplatelet treatment. Atherosclerosis 231:392–400. CrossRefPubMedGoogle Scholar
  7. 7.
    Barygina VV, Becatti M, Soldi G, Prignano F, Lotti T, Nassi P, Wright D, Taddei N, Fiorillo C (2013) Altered redox status in the blood of psoriatic patients: involvement of NADPH oxidase and role of anti-TNF-α therapy. Redox Rep 18:100–106. CrossRefPubMedGoogle Scholar
  8. 8.
    Fiorillo C, Nediani C, Ponziani V, Giannini L, Celli A, Nassi N, Formigli L, Perna AM, Nassi P (2005) Cardiac volume overload rapidly induces oxidative stress-mediated myocyte apoptosis and hypertrophy. Biochim Biophys Acta 1741:173–182. CrossRefPubMedGoogle Scholar
  9. 9.
    Barygina V, Becatti M, Lotti T, Moretti S, Taddei N, Fiorillo C (2015) Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin. J Dermatol Sci 79:163–170. CrossRefPubMedGoogle Scholar
  10. 10.
    Becatti M, Marcucci R, Gori AM, Mannini L, Grifoni E, Alessandrello Liotta A, Sodi A, Tartaro R, Taddei N, Rizzo S, Prisco D, Abbate R, Fiorillo C (2016) Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion. J Thromb Haemost 14:2287–2297. CrossRefPubMedGoogle Scholar
  11. 11.
    Fiorillo C, Becatti M, Attanasio M, Lucarini L, Nassi N, Evangelisti L, Porciani MC, Nassi P, Gensini GF, Abbate R, Pepe G (2010) Evidence for oxidative stress in plasma of patients with Marfan syndrome. Int J Cardiol 145:544–546. CrossRefPubMedGoogle Scholar
  12. 12.
    Fiorillo C, Pace S, Ponziani V, Nediani C, Perna AM, Liguori P, Cecchi C, Nassi N, Donzelli GP, Formigli L, Nassi P (2002) Poly(ADP-ribose) polymerase activation and cell injury in the course of rat heart heterotopic transplantation. Free Radic Res 36:79–87. CrossRefPubMedGoogle Scholar
  13. 13.
    Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H (2017) Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol 8:600. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Choi SH, Sviridov D, Miller YI (2017) Oxidized cholesteryl esters and inflammation. Biochim Biophys Acta 1862:393–397. CrossRefGoogle Scholar
  15. 15.
    Panth N, Paudel KR, Parajuli K (2016) Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med 2016:9152732. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aksu K, Donmez A, Keser G (2012) Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des 18:1478–1493CrossRefPubMedGoogle Scholar
  17. 17.
    Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, Vaglio A, Taddei N, Abbate R, Emmi L, Goldoni M, Fiorillo C, Prisco D (2016) Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Behçet disease. Circulation 133:302–311. CrossRefPubMedGoogle Scholar
  18. 18.
    Bonaventura A, Liberale L, Carbone F, Vecchié A, Diaz-Cañestro C, Camici GG, Montecucco F, Dallegri F (2018) The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost 118:6–27. CrossRefPubMedGoogle Scholar
  19. 19.
    Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16:396–400. CrossRefGoogle Scholar
  20. 20.
    Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, Choi JH, Choi Y, Shim S, Lyu IS, Yun BH, Han Y, Lee D, Lee SY, Yoo BH, Lee KH, Kim TL, Kim H, Shim JS, Nam W, So H, Choi S, Lee S, Shin JI (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16:1160–1173. CrossRefPubMedGoogle Scholar
  21. 21.
    Hu SC, Yu HS, Yen FL, Lin CL, Chen GS, Lan CC (2016) Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep 6:31119. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mozzini C, Garbin U, Fratta Pasini AM, Cominacini L (2017) An exploratory look at NETosis in atherosclerosis. Intern Emerg Med 12:13–22. CrossRefPubMedGoogle Scholar
  23. 23.
    Mozzini C, Garbin U, Stranieri C, Salandini G, Pesce G, Fratta Pasini AM, Cominacini L (2018) Nuclear factor kappa B in patients with a history of unstable angina: case reopened (IAEM-D-17-00427R2) Google Scholar
  24. 24.
    Becatti M, Prignano F, Fiorillo C, Pescitelli L, Nassi P, Lotti T, Taddei N (2010) The involvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: protective effects of curcumin and capsaicin. Antioxid Redox Signal 13:1309–1321. CrossRefPubMedGoogle Scholar
  25. 25.
    Frantz S, Fraccarollo D, Wagner H, Behr TM, Jung P, Angermann CE, Ertl G, Bauersachs J (2003) Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 57:749–756. CrossRefPubMedGoogle Scholar
  26. 26.
    Grabellus F, Levkau B, Sokoll A, Welp H, Schmid C, Deng MC, Takeda A, Breithardt G, Baba HA (2002) Reversible activation of nuclear factor-kappaB in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res 53:124–130CrossRefPubMedGoogle Scholar
  27. 27.
    Zhai K, Tang Y, Zhang Y, Li F, Wang Y, Cao Z, Yu J, Kou J, Yu B (2015) NMMHC IIA inhibition impedes tissue factor expression and venous thrombosis via Akt/GSK3β-NF-κB signalling pathways in the endothelium. Thromb Haemost 114:173–185. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li YD, Ye BQ, Zheng SX, Wang JT, Wang JG, Chen M, Liu JG, Pei XH, Wang LJ, Lin ZX, Gupta K, Mackman N, Slungaard A, Key NS, Geng JG (2009) NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. J Biol Chem 284:4473–4483. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SIMI 2018

Authors and Affiliations

  1. 1.Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly

Personalised recommendations