Skip to main content

Advertisement

Log in

Predictive modeling of inpatient mortality in departments of internal medicine

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Despite overwhelming data on predictors of inpatient mortality, it is unclear which variables are the most instructive in predicting mortality of patients in departments of internal medicine. This study aims to identify the most informative predictors of inpatient mortality, and builds a prediction model on an individual level, given a constellation of patient characteristics. We use a penalized method for developing the prediction model by applying the least-absolute-shrinkage and selection-operator regression. We utilize a cohort of adult patients admitted to any of 5 departments of internal medicine during 3.5 years. We integrated data from electronic health records that included clinical, epidemiological, administrative, and laboratory variables. The prediction model was evaluated using the validation sample. Of 10,788 patients hospitalized during the study period, 874 (8.1%) died during admission. We find that the strongest predictors of inpatient mortality are prior admission within 3 months, malignant morbidity, serum creatinine levels, and hypoalbuminemia at hospital admission, and an admitting diagnosis of sepsis, pneumonia, malignant neoplastic disease, or cerebrovascular disease. The C-statistic of the risk prediction model is 89.4% (95% CI 88.4–90.4%). The predictive performance of this model is better than a multivariate stepwise logistic regression model. By utilizing the prediction model, the AUC for the independent (validation) data set is 85.7% (95% CI 84.1–87.3%). Using penalized regression, this prediction model identifies the most informative predictors of inpatient mortality. The model illustrates the potential value and feasibility of a tool that can aid physicians in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Steyerberg E (2009) Applications of prediction models. In: Steyerberg E (ed) Clinical prediction models: a practical approach to development, validation, and updating. Springer, New York, pp 11–31

    Chapter  Google Scholar 

  2. Bo M, Raspo S, Massaia M, Cena P, Bosco F, Fabris F et al (2003) A predictive model of in-hospital mortality in elderly patients admitted to medical intensive care units. J Am Geriatr Soc 51:1507–1508

    Article  PubMed  Google Scholar 

  3. Nobre SR, Cabral JE, Gomes JJ, Leitao MC (2008) In-hospital mortality in spontaneous bacterial peritonitis: a new predictive model. Eur J Gastroenterol Hepatol 20:1176–1181

    Article  PubMed  Google Scholar 

  4. Tabak YP, Sun X, Nunez CM, Johannes RS (2013) Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS). J Am Med Inf Assoc 21:455–463

    Article  Google Scholar 

  5. Ouwerkerk W, Voors AA, Zwinderman AH (2014) Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC Heart Fail 2:429–436

    Article  PubMed  Google Scholar 

  6. Smolin B, Levy Y, Sabbach-Cohen E, Levi L, Mashiach T (2014) Predicting mortality of elderly patients acutely admitted to the Department of Internal Medicine. Int J Clin Pract 69:501–508

    Article  PubMed  Google Scholar 

  7. Aylin P, Bottle A, Majeed A (2007) Use of administrative data or clinical databases as predictors of risk of death in hospital: comparison of models. BMJ. https://doi.org/10.1136/bmj.39168.496366.55

    Google Scholar 

  8. Walter S, Tiemeier H (2009) Variable selection: current practice in epidemiological studies. Eur J Epidemiol 24:733–736

    Article  PubMed  PubMed Central  Google Scholar 

  9. Greenland S (2008) Variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol 167:523–529

    Article  PubMed  Google Scholar 

  10. Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA (2002) Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 155:176–184

    Article  PubMed  Google Scholar 

  11. Mickey RM, Greenland S (1989) The impact of confounder selection criteria on effect estimation. Am J Epidemiol 129:125–137

    Article  CAS  PubMed  Google Scholar 

  12. Austin PC, Tu JV (2004) Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. J Clin Epidemiol 57:1138–1146

    Article  PubMed  Google Scholar 

  13. Arnold LD, Braganza M, Salih R, Colditz GA (2013) Statistical trends in the Journal of the American Medical Association and implications for training across the continuum of medical education. PLoS One 8:e77301. https://doi.org/10.1371/journal.pone.0077301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Narayanan R, Nugent R, Nugent K (2015) An investigation of the variety and complexity of statistical methods used in current internal medicine literature. South Med J 108:629–634

    PubMed  Google Scholar 

  15. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  PubMed  Google Scholar 

  16. Sakhnini A, Saliba W, Schwartz N, Bisharat N (2017) The derivation and validation of a simple model for predicting in-hospital mortality of acutely admitted patients to internal medicine wards. Medicine (Baltimore) 96:e7284. https://doi.org/10.1097/MD.0000000000007284

    Article  Google Scholar 

  17. Hastie T, Tibshirani R, Friedman J (2001) Model Assessment and Selection. In: Hastie T, Tibshirani R, Friedman J (eds) The elements of statistical learning, data mining, inference, and prediction, 2nd edn. Springer, New York, pp 193–224

    Google Scholar 

  18. Asadollahi K, Hastings IM, Gill GV, Beeching NJ (2011) Prediction of hospital mortality from admission laboratory data and patient age: a simple model. Emerg Med Australas 23:354–363

    Article  PubMed  Google Scholar 

  19. Froom P, Shimoni Z (2006) Prediction of hospital mortality rates by admission laboratory tests. Clin Chem 52:325–328

    Article  CAS  PubMed  Google Scholar 

  20. Jellinge ME, Henriksen DP, Hallas P, Brabrand M (2014) Hypoalbuminemia is a strong predictor of 30-day all-cause mortality in acutely admitted medical patients: a prospective, observational, cohort study. PLoS One 9:e105983. https://doi.org/10.1371/journal.pone.0105983

    Article  PubMed  PubMed Central  Google Scholar 

  21. Silva TJ, Jerussalmy CS, Farfel JM, Curiati JA, Jacob-Filho W (2009) Predictors of in-hospital mortality among older patients. Clinics (Sao Paulo) 64:613–618

    Article  Google Scholar 

  22. Asadollahi K, Beeching NJ, Gill GV (2010) Leukocytosis as a predictor for non-infective mortality and morbidity. QJM 103:285–292

    Article  CAS  PubMed  Google Scholar 

  23. Salciccioli JD, Marshall DC, Pimentel MA, Santos MD, Pollard T, Celi LA et al (2015) The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: an observational cohort study. Crit Care. https://doi.org/10.1186/s13054-014-0731-6

    PubMed  Google Scholar 

  24. Baysal E, Cetin M, Yaylak B, Altntas B, Altndag R, Adyaman S et al (2015) Roles of the red cell distribution width and neutrophil/lymphocyte ratio in predicting thrombolysis failure in patients with an ST-segment elevation myocardial infarction. Blood Coagul Fibrinolysis 26:274–278

    Article  CAS  PubMed  Google Scholar 

  25. Jia M, Huang W, Li L, Xu Z, Wu L (2015) Statins Reduce mortality after non-severe but not after severe pneumonia: a systematic review and meta-analysis. J Pharm Pharm Sci 18:286–302

    Article  PubMed  Google Scholar 

  26. Jung JM, Choi JY, Kim HJ, Seo WK (2015) Statin use in spontaneous intracerebral hemorrhage: a systematic review and meta-analysis. Int J Stroke 10 Suppl(A100):10–17

  27. Wang JQ, Wu GR, Wang Z, Dai XP, Li XR (2014) Long-term clinical outcomes of statin use for chronic heart failure: a meta-analysis of 15 prospective studies. Heart Lung Circ 23:105–113

    Article  CAS  PubMed  Google Scholar 

  28. Tabak YP, Sun X, Derby KG, Kurtz SG, Johannes RS (2010) Development and validation of a disease-specific risk adjustment system using automated clinical data. Health Serv Res 45:1815–1835

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakas CT, Schutz N, Werners M, Leichtle AB (2016) Accuracy and calibration of computational approaches for inpatient mortality predictive modeling. PLoS One 11:e0159046. https://doi.org/10.1371/journal.pone.0159046

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tabak YP, Johannes RS, Silber JH (2007) Using automated clinical data for risk adjustment: development and validation of six disease-specific mortality predictive models for pay-for-performance. Med Care 45:789–805

    Article  PubMed  Google Scholar 

  31. Escobar GJ, Greene JD, Scheirer P, Gardner MN, Draper D, Kipnis P (2008) Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med Care 46:232–239

    Article  PubMed  Google Scholar 

  32. Kao SS, Kim SW, Horwood CM, Hakendorf P, Li JY, Thompson CH (2015) Variability in inpatient serum creatinine: its impact upon short- and long-term mortality. QJM 108:781–787

    Article  CAS  PubMed  Google Scholar 

  33. Zhao L, Wang L, Zhang Y (2009) Elevated admission serum creatinine predicts poor myocardial blood flow and one-year mortality in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. J Invas Cardiol 21:493–498

    Google Scholar 

  34. Li ZY, Pu L, Chen ZH, An FH, Li LH, Li L et al (2014) Combined effects of admission serum creatinine concentration with age and gender on the prognostic significance of subjects with acute ST-elevation myocardial infarction in China. PLoS One 9:e108986. https://doi.org/10.1371/journal.pone.0108986

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu MY, Lee SW, Baek SH, Na KY, Chae DW, Chin HJ et al (2017) Hypoalbuminemia at admission predicts the development of acute kidney injury in hospitalized patients: a retrospective cohort study. PLoS One 12:e0180750. https://doi.org/10.1371/journal.pone.0180750

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morotti A, Marini S, Lena UK, Crawford K, Schwab K, Kourkoulis C et al (2017) Significance of admission hypoalbuminemia in acute intracerebral hemorrhage. J Neurol 264:905–911

    Article  CAS  PubMed  Google Scholar 

  37. Huang YL, Hu ZD, Liu SJ, Sun Y, Qin Q, Qin BD et al (2014) Prognostic value of red blood cell distribution width for patients with heart failure: a systematic review and meta-analysis of cohort studies. PLoS One 9:e104861. https://doi.org/10.1371/journal.pone.0104861

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB et al (2009) Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci 65:258–265

    PubMed  Google Scholar 

  39. Li YF, Luo J, Li Q, Jing YJ, Wang RY, Li RS (2012) A new simple model for prediction of hospital mortality in patients with intracerebral hemorrhage. CNS Neurosci Ther 18:482–486

    Article  PubMed  Google Scholar 

  40. Moons KG, Altman DG, Vergouwe Y, Royston P (2009) Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 338:b606. https://doi.org/10.1136/bmj.b606

    Article  PubMed  Google Scholar 

  41. Pavlou M, Ambler G, Seaman SR, Guttmann O, Elliott P, King M et al (2015) How to develop a more accurate risk prediction model when there are few events. BMJ 351:h3868. https://doi.org/10.1136/bmj.h3868

    Article  PubMed  PubMed Central  Google Scholar 

  42. Celi LA, Tang RJ, Villarroel MC, Davidzon GA, Lester WT, Chueh HC (2011) A clinical database-driven approach to decision support: predicting mortality among patients with acute kidney injury. J Healthc Eng 2:97–110

    Article  PubMed  PubMed Central  Google Scholar 

  43. Celi LA, Galvin S, Davidzon G, Lee J, Scott D, Mark R (2013) A database-driven decision support system: customized mortality prediction. J Pers Med 2:138–148

    Article  Google Scholar 

  44. Mayaud L, Lai PS, Clifford GD, Tarassenko L, Celi LA, Annane D (2013) Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med 41:954–962

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gaskin GL, Pershing S, Cole TS, Shah NH (2015) Predictive modeling of risk factors and complications of cataract surgery. Eur J Ophthalmol 26:328–337

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiel Bisharat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

All procedures performed in the present study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The present study retrospectively analyzed data abstracted from electronic health records thus informed consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, N., Sakhnini, A. & Bisharat, N. Predictive modeling of inpatient mortality in departments of internal medicine. Intern Emerg Med 13, 205–211 (2018). https://doi.org/10.1007/s11739-017-1784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-017-1784-8

Keywords

Navigation