Advertisement

Internal and Emergency Medicine

, Volume 13, Issue 6, pp 901–906 | Cite as

Lactate determination in pleural and abdominal effusions: a quick diagnostic marker of exudate—a pilot study

  • Giovanni PortaEmail author
  • Fabio G. Numis
  • Valerio Rosato
  • Antonio Pagano
  • Mario Masarone
  • Giorgio Bosso
  • Claudia Serra
  • Luca Rinaldi
  • Maria C. Fascione
  • Annalisa Amelia
  • Fiorella Paladino
  • Fernando Schiraldi
EM - ORIGINAL

Abstract

Pleural or abdominal effusions are frequent findings in ICU and Internal Medicine patients. Diagnostic gold standard to distinguish between transudate and exudate is represented by “Light’s Criteria,” but, unfortunately, the chemical–physical examination for their calculation is not a rapid test. Pursuing an acid–base assessment of the fluid by a blood-gas analyzer, an increase of lactate beyond the normal serum range is reported in the exudative effusions. The advantages of this test are that it is a very fast bed-side test, executable directly by the physician. The aim of this study is to evaluate whether the increase in lactate in pleural and abdominal effusions might be used as a criterion for the differential diagnosis of the nature of the fluid. Sixty-nine patients with pleural or abdominal effusions and clinical indication for thoracentesis or paracentesis were enrolled. Acid–base assessment with lactate, total protein, and LDH dosage on the serum, and acid–base assessment with lactate, total protein, and LDH dosage, cytology, and bacterial culture on the fluid were performed to each patient. Fluid–blood lactate difference (ΔLacFB) and fluid–blood lactate ratio (LacFB ratio) were calculated. A statistical analysis was carried out for fluid lactate (LacF), ΔLacFB, and LacFB ratio, performing ROC curves to find the cut-off values with best sensitivity (Sn) and specificity (Sp) predicting an exudate diagnosis: LacF: cut-off value: 2.4 mmol/L; AU-ROC 0.854 95% CI 0.756–0.952; Sn 0.77; Sp 0.84. ΔLacFB: cut-off value: 0.95 mmol/L; Au-ROC 0.876 95% CI 0.785–0.966; Sn 0.80; Sp 0.92. LacFB ratio: cut-off value: 2 mmol/L; Au-ROC 0.730 95% CI 0.609–0.851; Sn 0.74; Sp 0.65. Lactate dosage by blood-gas analyzer on pleural and abdominal effusions seems to be a promising tool to predict a diagnosis of exudate.

Keywords

Lactate Delta lactate Lactate ratio Pleural effusion Abdominal effusion Light’s criteria Exudate Transudate Diagnostic marker Thoracentesis Paracentesis Infection Sepsis Pneumonia Bacterial peritonitis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Supplementary material

11739_2017_1757_MOESM1_ESM.tif (1.8 mb)
Supplementary material 1: ROC curve of ΔpHFB (TIFF 1868 kb)
11739_2017_1757_MOESM2_ESM.doc (28 kb)
Supplementary material 2 (DOC 27 kb)
11739_2017_1757_MOESM3_ESM.docx (92 kb)
Supplementary material 3 (DOCX 92 kb)

References

  1. 1.
    Maskell NA, Butland RJA et al (2003) BTS guidelines for the investigation of an unilateral pleural effusion in adults. Thorax 58(Suppl II):ii8–ii17CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Light RW, Mac Gregor MI, Luchsinger PC et al (1972) Pleural effusions; the diagnostic separation of transudates and exudates. Ann Intern Med 77:507–513CrossRefPubMedGoogle Scholar
  3. 3.
    Light RW (2002) Pleural effusions. N Engl J Med 346(25):1971–1977CrossRefPubMedGoogle Scholar
  4. 4.
    Wysenbeek AJ, Lahay M, Aelion JA et al (1985) Eosinophilic pleural effusions: a review of 36 cases. Respiration 48:73–76CrossRefPubMedGoogle Scholar
  5. 5.
    Adelman M, Albelda SM, Gottlieb J et al (1984) Diagnostic utility of pleural fluid eosinophilia. Am J Med 77:915–920CrossRefPubMedGoogle Scholar
  6. 6.
    Martinez-Garcia MA, Cases-Viedma E, Cordero-Rodriguez PJ et al (2000) Diagnostic utility of eosinophils in the pleural fluid. Eur Respir J 15:166–169CrossRefPubMedGoogle Scholar
  7. 7.
    Levine H, Metzger W, Lacera D et al (1970) Diagnosis of tuberculous pleurisy by culture of pleural biopsy specimen. Arch Intern Med 126:269–271CrossRefPubMedGoogle Scholar
  8. 8.
    Potts DE, Levin DC, Sahn SA (1976) Pleural fluid pH in parapneumonic effusions. Chest 70:328–331CrossRefPubMedGoogle Scholar
  9. 9.
    Chavalittamrong B, Angsusingha K, Tuchinda M et al (1979) Diagnostic significance of pH, lactic acid dehydrogenase, lactate and glucose in pleural fluid. Respiration 38(2):112–120CrossRefPubMedGoogle Scholar
  10. 10.
    Brumbaugh GW, Benson PA (1990) Partial pressures of oxygen and carbon dioxide, pH and concentrations of bicarbonate, lactate and glucose in pleural fluid from horses. Am J Vet Res 51(7):1032–1037PubMedGoogle Scholar
  11. 11.
    Rodriguez P, Lopez M (1989) Low glucose and pH levels in malignant pleural effusions. Diagnostic significance and prognostic value in respect to pleurodesis. Am Rev Respir Dis 139:663–667CrossRefGoogle Scholar
  12. 12.
    Sahn SA (1985) Pathogenesis and clinical features of diseases associated with a low pleural fluid glucose. In: Chretien J, Bignon J, Hirsch A (eds) The pleura in health and disease. Marcel Dekker, New York, pp 267–285Google Scholar
  13. 13.
    Light RW, Ball WCJ (1973) Glucose and amylase in pleural effusions. JAMA 225:257–259CrossRefPubMedGoogle Scholar
  14. 14.
    Potts DE, Willcox MA, Good JT Jr et al (1978) The acidosis of low-glucose pleural effusions. Am Rev Respir Dis 117:665–671PubMedGoogle Scholar
  15. 15.
    Ende N (1960) Studies of amylase activity in pleural effusions and ascites. Cancer 13:283–287CrossRefPubMedGoogle Scholar
  16. 16.
    Sherr HP, Light RW, Merson MH et al (1972) Origin of pleural fluid amylase in esophageal rupture. Ann Intern Med 76:985–986CrossRefPubMedGoogle Scholar
  17. 17.
    Kramer M (1989) High amylase levels in neoplasm-related pleural effusion. Ann Intern Med 110:567–569CrossRefPubMedGoogle Scholar
  18. 18.
    Gil S, Martinez M, Cases V et al (1995) Pleural cholesterol in differentiating transudates and exudates. A prospective study of 232 cases. Respiration 62:57–63CrossRefGoogle Scholar
  19. 19.
    Hamm H, Brohan U, Bohmer R et al (1987) Cholesterol in pleural effusions. A diagnostic aid. Chest 92:296–302CrossRefPubMedGoogle Scholar
  20. 20.
    Ortega L, Heredia JL, Armengol R et al (1991) The differential diagnosis between pleural exudates and transudates: the value of cholesterol. Med Clin (Barc) 96:367–370Google Scholar
  21. 21.
    Nanji AA, Whitelow KJ (1984) Clinical utility of lactic acid measurement in body fluids other than plasma. J Emerg Med 1(6):521–526CrossRefPubMedGoogle Scholar
  22. 22.
    Pettersson T, Ojala K, Weber TH (1985) Diagnostic significance of pleural fluid lactate concentrations. Infection 13(6):257–259CrossRefPubMedGoogle Scholar
  23. 23.
    Gastrin B, Lovestad A (1988) Diagnostic significance of pleural fluid lactate concentration in pleural and pulmonary diseases. Scand J Infect Dis 20:85–90CrossRefPubMedGoogle Scholar
  24. 24.
    Jokipii AM, Kiviranta K, Jokipii L (1987) Gas chromatographically quantitated lactate in empyema and other pleural effusions. Eur J Clin Microbiol 6(6):731–733CrossRefPubMedGoogle Scholar
  25. 25.
    Brook I (1980) Measurement of lactic acid in pleural fluid. Respiration 40(6):344–348CrossRefPubMedGoogle Scholar
  26. 26.
    Weynants P, Reynaert M, Lievens M et al (1987) Pleural fluid lactate in pleural effusion. Eur J Respir Dis 71(1):19–22PubMedGoogle Scholar
  27. 27.
    Brook I (1981) The importance of lactic acid levels in body fluids in the detection of bacterial infections. Rev Infect Dis 3(3):470–478CrossRefPubMedGoogle Scholar
  28. 28.
    Bruun B, Stilbo I, Bartels P (1984) Value of pleural lactate in the differential diagnosis between empyema and non-bacterial pleural effusions. Acta Pathol Microbiol Immunol Scand B 92(2):85–88PubMedGoogle Scholar
  29. 29.
    Light RW, Erozan YS, Ball WCI (1973) Cells in pleural fluid. Their value in differential diagnosis. Arch Intern Med 132:854–860CrossRefPubMedGoogle Scholar
  30. 30.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent J-L, Moreno R (2013) Surviving sepsis campaign guidelines committee including the pediatric subgroup: surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:N2CrossRefGoogle Scholar
  31. 31.
    Kraut JA, Madias NE (2014) Lactic acidosis. N Engl J Med 371:2309–2319CrossRefPubMedGoogle Scholar
  32. 32.
    Bar-Even A, Flamholz A, Noor E et al (2012) Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8(6):509–517CrossRefPubMedGoogle Scholar
  33. 33.
    Meert KL, McCaulley L, Sarnaik AP (2012) Mechanism of lactic acidosis in children with acute severe asthma. Pediatr Crit Care Med 13(1):28–31CrossRefPubMedGoogle Scholar
  34. 34.
    Kruse JA, Carlson RW (1987) Lactate metabolism. Crit Care Clin 3(4):725–746CrossRefPubMedGoogle Scholar
  35. 35.
    Taylor DJ, Faragher EB, Evanson JM (1992) Inflammatory cytokines stimulate glucose uptake and glycolysis but reduce glucose oxidation in human dermal fibroblasts in vitro. Circ Shock 37:105–110PubMedGoogle Scholar
  36. 36.
    Suetrong B, Walley KR (2016) Lactic acidosis in sepsis: it’s not all anaerobic: implications for diagnosis and management. Chest 149(1):252–261CrossRefPubMedGoogle Scholar
  37. 37.
    Suistomaa M, Ruokonen E, Kari A et al (2000) Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock 14(1):8–12CrossRefPubMedGoogle Scholar
  38. 38.
    Levy B, Desebbe O, Montemont C et al (2008) Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 30:417–421CrossRefPubMedGoogle Scholar
  39. 39.
    Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Investig 70(3):550–557CrossRefPubMedGoogle Scholar
  40. 40.
    Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6(4):284–285CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Brooks GA (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587(23):5591–5600CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brooks GA (2000) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32(4):790–799CrossRefPubMedGoogle Scholar
  43. 43.
    Smith SM, Eng RH, Campos JM et al (1989) d-lactic acid measurements in the diagnosis of bacterial infections. J Clin Microbiol 27(3):385–388PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wellmer A, Prange J, Gerber J (2001) Et al: d- and l-lactate in rabbit and human bacterial meningitis. Scand J Infect Dis 33(12):909–913CrossRefPubMedGoogle Scholar
  45. 45.
    Xiong X, Yang Z, Liwei Z, Peng K, Nan J (2016) The diagnostic value of cerebrospinal fluid lactate for post-neurosurgical bacterial meningitis: a meta-analysis. BMC Infect Dis 16:483CrossRefGoogle Scholar
  46. 46.
    Burgess LJ, Reuter H, Cartstens ME et al (2002) Cytokine production in patients with tuberculous pericarditis. Int J Tuberc Lung Dis 6:439PubMedGoogle Scholar
  47. 47.
    Hoefs JC (1983) Serum protein concentration and portal pressure determine the ascitic fluid protein concentration in patients with chronic liver disease. J Lab Clin Med 102:260PubMedGoogle Scholar
  48. 48.
    Hoefs JC (1984) Ascitic fluid analysis in the differentiation of spontaneous bacterial peritonitis from gastrointestinal tract perforation into ascitic fluid. Hepatology 4:447CrossRefPubMedGoogle Scholar
  49. 49.
    Hoefs JC (1981) Increase in ascites white blood cell and protein concentrations during diuresis in patients with chronic liver disease. Hepatology 1:249CrossRefPubMedGoogle Scholar
  50. 50.
    Akriviadis EA, Runyon BA (1990) Utility of an algorithm in differentiating spontaneous from secondary bacterial peritonitis. Gastroenterology 98:127CrossRefPubMedGoogle Scholar

Copyright information

© SIMI 2017

Authors and Affiliations

  • Giovanni Porta
    • 1
    Email author
  • Fabio G. Numis
    • 2
  • Valerio Rosato
    • 3
  • Antonio Pagano
    • 1
  • Mario Masarone
    • 4
  • Giorgio Bosso
    • 1
  • Claudia Serra
    • 1
  • Luca Rinaldi
    • 3
  • Maria C. Fascione
    • 3
  • Annalisa Amelia
    • 3
  • Fiorella Paladino
    • 1
  • Fernando Schiraldi
    • 2
  1. 1.Emergency Department“A. Cardarelli” HospitalNaplesItaly
  2. 2.Emergency Department“San Paolo” HospitalNaplesItaly
  3. 3.Internal Medicine and Hepatology DepartmentSecond University of NaplesNaplesItaly
  4. 4.Internal Medicine and Hepatology UnitUniversity of SalernoBaronissiItaly

Personalised recommendations